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The capacity of long-term memory is thought to be virtually
unlimited. However, our memory bank may need to be pruned
regularly to ensure that the information most important for
behavior can be stored and accessed efficiently. Using functional
magnetic resonance imaging of the human brain, we report the
discovery of a context-based mechanism for determining which
memories to prune. Specifically, when a previously experienced
context is reencountered, the brain automatically generates
predictions about which items should appear in that context. If an
item fails to appear when strongly expected, its representation in
memory is weakened, and it is more likely to be forgotten. We
find robust support for this mechanism using multivariate pattern
classification and pattern similarity analyses. The results are ex-
plained by a model in which context-based predictions activate
item representations just enough for them to be weakened during
a misprediction. These findings reveal an ongoing and adaptive
process for pruning unreliable memories.

forgetting | learning | multivariate pattern analysis | perception |
temporal context

Our experience of the world is recorded in long-term memory
every moment of every day. Such memory formation occurs

continuously and incidentally, resulting in a potentially astro-
nomical number of memory traces. This cluttering can be prob-
lematic for the efficient functioning of memory systems in the
brain. At retrieval, irrelevant memories will compete with the
sought-after memory and can prevent it from coming to mind.
To avoid these costs, we propose that memory systems regulate
themselves by adaptively “pruning” item representations.
How does the brain decide which items to prune from mem-

ory? We hypothesize that the brain makes this determination
based on how accurately an item is predicted by its context.
Specifically, the brain may automatically predict which items are
likely to appear in a given context based on prior experience and
then compare this prediction against the actual contents of ex-
perience. When the prediction is wrong, the representations of
the expected items in long-term memory are weakened. This
weakening is manifested in a graded reduction of the accessibility
of these items during later retrieval. In this way, the brain can use
context-based prediction error to determine when an item is not
a stable aspect of the world, and this determination may, in turn,
mark the item for pruning.
The notion that the brain automatically predicts which items

should appear in a context is supported by previous research.
Such predictions result from learning relationships between
items (1), which in turn allow the appearance of one item to cue
the reactivation of other associated items (2–4). Behavioral
studies have obtained evidence for automatic prediction by
showing that task performance is facilitated for items that are
predictable in the current context (5, 6). More recently, neuro-
imaging studies have obtained evidence for automatic prediction
by showing that the medial temporal lobe and sensory cortex
reinstate representations of predicted items (7–9).
Although context-based prediction has been found previously,

its consequences for item learning are unknown. As noted above,
such prediction provides an opportunity to discover whether an
item is a stable aspect of the world. When an item fails to appear

in a context with which it previously has been associated, the
resulting error signal may cause the item to be pruned from
memory. To test this pruning hypothesis, we set out to relate
prediction strength to subsequent memory. Specifically, our hy-
pothesis posits that in situations where a predicted item does
not appear as expected, prediction strength should be negatively
related to subsequent memory for the item: Stronger predictions
lead to larger prediction errors, which in turn lead to more
weakening of the predicted item’s memory trace and ultimately
to reduced confidence in having seen the item before and a
greater likelihood of forgetting the item altogether.
Numerous studies have investigated how prediction error

shapes learning in the brain (10–12). Our study differs from
these studies in two important ways. First, existing studies have
focused primarily on learning to predict future rewards. That is,
the specific identities of the predicting stimuli were irrelevant
other than in terms of how much reward they predicted (13). In
contrast, we examine an unsupervised form of stimulus–stimulus
learning in which relationships are formed between, and pre-
dictions made about, stimulus identities with no inherent moti-
vational significance. Second, prediction error typically is viewed
as a way of updating associative strength between cues and
outcomes (14). Here, that process would correspond to learning
how strongly an item (the “outcome”) should be predicted by its
context (the “cue”). Instead, we test the idea that context-based
prediction error weakens the long-term memory representation
of the predicted item itself.
To relate the context-based prediction of an item to its later

accessibility in memory, we developed a trial-by-trial measure of
prediction strength. There is no clear behavioral signature of
automatic prediction that can be measured for a single trial.
Thus, we used the output of a multivariate pattern classifier
applied to functional magnetic resonance imaging (fMRI) data
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(15). With this technique, we quantified how strongly an item
was predicted when its previously associated temporal context
was repeated and then related this prediction strength to sub-
sequent recognition memory for that item. We also tested our
hypothesis with a second multivariate technique, pattern simi-
larity analysis (16). This approach allowed us to replicate and
extend the main findings, confirming that the relationship be-
tween classifier output and subsequent memory reflected pre-
diction of the previously associated item per se (SI Text).
Twenty-four participants completed an fMRI session in two

phases: an incidental encoding phase and a subsequent memory
test phase. In the incidental encoding phase, participants were
exposed to a continuous stream of photographs of faces and scenes
while performing a categorization cover task (discriminating male/
female or indoor/outdoor, respectively). Unbeknownst to partic-
ipants, the stream was generated from triplets (Fig. 1A). The first
two context items in each triplet were from one category, and the
final item was from the other category (e.g., Aface→Bface→Cscene).
These two context items were repeated later in the stream but this
time were followed by a novel final item from their same category
(e.g., Aface→Bface→Dface). The triplets were used to construct the
sequence, but the triplet structure was not overtly signaled to
participants; items appeared continuously every 4.5 s. Additional
single items from each category (i.e., items whose preceding con-
text items never repeated) were inserted into the stream between
triplets (e.g., Xscene).
We expected that the repeated context items would auto-

matically trigger a prediction that the original final item (C)
would appear next — a prediction that then would be violated by
the appearance of the novel final item (D). During these re-
peated triplets, we assessed the strength of the prediction of C by
measuring how much information about the C item’s category
was available in the brain. Note that C always came a category
different from the A, B, and D items in the corresponding re-
peated triplet, making it possible to resolve how much partic-
ipants were expecting C using a category-based classifier.
In the subsequent memory test phase, participants performed

a recognition task for items from the encoding phase (Fig. 1B).

In addition to new lures, there were three types of old items: the
final items from the initial (C) and repeated triplets (D), and
control items that were not part of a triplet (X). Importantly,
all old items appeared only once during encoding, and thus
differences in memory performance between conditions must
result from the repetition of context items and any associated
prediction errors.

Results
Subsequent Memory Behavior. Participants displayed reliable
memory performance overall, successfully discriminating old
items in every condition from lures (all Ps < 0.001) (Fig. S1).
Although the essential test of our hypothesis relies on relating
memory to prediction strength on an item-by-item basis, we first
considered whether there was overall memory suppression for C
items relative to both D and X items irrespective of prediction
strength (Fig. 1C). Indeed, the high-confidence hit rate for C
items was significantly lower than for D items (t23 = 2.33, P =
0.029) and was marginally lower than for X items (t23 = 1.73, P =
0.096). These results did not depend on the greater novelty of
items preceding C items during encoding nor on the earlier av-
erage serial position of C items in the trial sequence (SI Text).
For the fMRI analyses below, we treat high-confidence hits as

“remembered” and other items as “forgotten.” Requiring high
confidence for an item to be considered as remembered is con-
sistent with prior studies (e.g., refs. 17 and 18) and is supported
by participants exhibiting greater sensitivity for high-confidence
responses (mean A′ = 0.81) than for low-confidence responses
(mean A′ = 0.58; t23 = 6.07, P < 0.001).

Relating Prediction Strength to Subsequent Memory.Our hypothesis
does not state that memory will be impaired for all mispredicted
items. Rather, context-based prediction error triggers pruning,
and thus only C items that were strongly predicted in the re-
peated triplet should be more likely to be forgotten. That is, we
expected that the amount of prediction for a given C item should
be negatively related to its likelihood of being remembered:
Weak predictions should generate small errors with little impact,
whereas strong predictions should generate large errors and lead
to weakening of the memory. To test this hypothesis, we mea-
sured prediction strength with an fMRI-based pattern classifier.
For classification, we used regularized logistic regression

(penalty = 1) to identify face and scene information in brain-
activity patterns from anatomical regions of interest (ROIs) in
bilateral ventral temporal cortex. A separate classifier was
trained for each participant using an independent functional
localizer (Fig. S2A). The classifier then was applied to continu-
ous brain patterns from the incidental encoding phase. For each
C item, we calculated the relative amount of classifier evidence
for its category during the repeated triplet. We interpreted in-
formation about C’s category as evidence of prediction for two
reasons: (i) The C item (e.g., Cscene) was not shown in the re-
peated triplet, and (ii) the items that did appear in the re-
peated triplet were all from the other category (e.g.,
Aface→Bface→Dface). For the main analysis, we averaged the
relative evidence for C’s category over all time points in the
repeated triplet. To test the hypothesis that greater misprediction
of a C item increases the likelihood of its being forgotten, we
related this average category evidence to the memory outcome
for the same C item using logistic regression (Fig. 2A).
Consistent with our hypothesis, there was a significant nega-

tive relationship between prediction strength and memory (Fig.
2B): Greater category evidence was linked to an increased like-
lihood of forgetting (β1 = −0.85, P < 0.001). To examine how
this negative trend developed, we performed this same analysis
over different time windows in the repeated triplet (Fig. 2C). We
binned the three time points around each of the three items in
the repeated triplet and around the triplet’s onset (as a baseline).
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Fig. 1. Experimental design and behavioral results. (A) During incidental
encoding, the trial sequence was constructed from triplets (A→B→C) that
repeated once with a novel final item (A→B→D) and unrepeated single
items (X). The categorization task was orthogonal to the triplet structure. (B)
In the subsequent memory test, old/new judgments were collected for final
items from initial (C) and repeated (D) triplets, single control items (X), and
novel lure items. All old items appeared once during incidental encoding. (C)
The high-confidence hit rate for C items was significantly lower than for D
items and was marginally lower than for X items. Error bars reflect ± 1 SEM.
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If the overall negative trend reflects context-based prediction,
the trend should be most negative later in the triplet. Namely,
there should be no trend before the context items appear, and
the trend should grow to maximum negativity at the time of D,
after both predictive context items have appeared and at the
anticipated time of C. Indeed, the beta coefficient during the D
time period was reliably negative (P = 0.002) and was signifi-
cantly lower than baseline (P = 0.014). All these findings were
validated with a second multivariate analysis approach based on
pattern similarity (Fig. S3), which confirmed that prediction of
the C item per se was negatively related to subsequent memory.
Note that because only high-confidence hits were treated as re-
membered, increased forgetting may reflect reduced confidence
in recognition (e.g., low-confidence hits that were treated as for-
gotten). Nonetheless, this interpretation still would be consis-
tent with the hypothesis that strong prediction of the C item
weakened its memory.
To test the specificity of these results, we examined whether

classifier evidence for categories other than the C category was
related to subsequent memory. We first considered whether the
observed negative relationship would persist after controlling for
evidence of the D category with partial correlation and found
that it remained robust (P = 0.008). When this analysis was re-
versed, testing how D category evidence was related to memory
for C after controlling for C category evidence, there was no
relationship (P = 0.99). Moreover, classifier evidence for nei-
ther the object category nor “rest” (from the localizer) pre-
dicted C memory (Ps > 0.36). Thus, worse memory for C items
was explained only by evidence for the C category in re-
peated triplets.

Ruling out an Alternative Interpretation. The observed negative
relationship between prediction strength and subsequent memory
is consistent with our hypothesis that context-based prediction
error leads to pruning. However, a potential alternative ex-
planation is that forgetting occurred because of poor encoding of
C in the initial triplet rather than because of a strong prediction
of C in the repeated triplet. In this scenario, repeated context

items triggered the attempted retrieval of C, which was slower
and more difficult for items that were poorly encoded. During
this memory search, other items from the same category were
examined and rejected, giving rise to greater category infor-
mation. Under this interpretation, the negative relationship be-
tween classifier evidence and memory is spurious: The quality
of the encoding of the C item in the initial triplet may determine
both the amount of category information in the repeated triplet
(poor quality means more search and thus more category infor-
mation) and the subsequent memory outcome (poor quality means
more forgetting), without the former having any direct effect on
the latter.
According to this alternative, the observed negative relation-

ship should be eliminated if the quality of initial encoding is
controlled. We operationally defined encoding quality as the
amount of classifier evidence for C’s category when it was per-
ceived in the initial triplet. This definition is based on the finding
of enhanced activation during initial encoding for subsequently
remembered vs. forgotten items (17, 19). We then repeated all
analyses after controlling for the effects of this “perception
strength” measure on both prediction strength and subsequent
memory (Fig. 3). Contrary to the alternative explanation, the
negative relationship between prediction strength and subsequent
memory remained robust (P = 0.004).

Evidence of Prediction. Having ruled out a contribution of ini-
tial encoding to the negative relationship between prediction
strength and memory, we are left with the interpretation that
prediction of C items during the repeated triplet per se was re-
sponsible for their worse memory. To support this interpretation,
we performed two additional tests of whether C items were
predicted overall.
First, as would be expected, there was more classifier evidence

for the C category during A and B in repeated triplets (when C
could be predicted) than during A and B in initial triplets (P =
0.038). There is a potential confound with this analysis, however:
A and B were novel in initial triplets but not in repeated triplets.
If repetition suppression reduced the amount of activity for A
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Fig. 2. Results of pattern classification analysis. (A) A
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and thus classifier evidence for it was interpreted as
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and B (20), then classifier evidence for their category may de-
crease, spuriously increasing evidence for other categories, in-
cluding C’s. This confound is improbable because repetition
suppression has been linked to increased, not decreased, classi-
fier evidence for repeated items (7). Indeed, more repetition
suppression for A and B (initial minus repeated univariate ac-
tivity; SI Text) was associated with greater evidence for their
category (P = 0.040) and lower evidence for C’s category (P <
0.001). Thus, repetition suppression worked against the observed
increase in C category evidence during context items in repeated
vs. initial triplets, so the increase can be interpreted more soundly
as prediction of C.
Second, insofar as C was predicted in repeated triplets, then

the amount of classifier evidence for C’s category in initial and
repeated triplets should be correlated across items. That is, idi-
osyncratic variance in the prototypicality of the faces and scenes
should lead to systematic variance across items in the amount of
evidence for their category; because we posited that the same C
item was processed in matching initial and repeated triplets,
prediction strength should be correlated with perception strength.
Indeed, this correlation was reliably positive at the time of C in
the repeated triplet (P = 0.022). There also is a potential con-
found in this analysis: A and B were present in both initial and
repeated triplets, and carryover activity from these items may
have driven the correlation. However, the relationship remained
marginally significant after controlling for the context items with
partial correlation (P = 0.060). These results also are consistent
with our interpretation that C items were predicted.

Nonmonotonic Plasticity Mechanism. Our discovery of a negative
relationship between memory activation and subsequent memory
is striking, given that positive relationships have been reported
routinely (17, 19). How does context-based prediction lead to
memory weakening? We interpret these findings in terms of
the nonmonotonic plasticity hypothesis (21, 22), which posits
a U-shaped relationship between memory activation and learn-
ing: Low activation does not lead to learning, moderate activa-
tion leads to memory weakening, and high activation leads to
strengthening. This hypothesis is based on neurophysiological
findings (23, 24): Moderate postsynaptic depolarization causes
long-term depression (i.e., synaptic weakening), whereas greater
postsynaptic depolarization causes long-term potentiation (i.e.,
synaptic strengthening).
Neural network modeling suggests that this learning principle

should scale up from synapses to neural ensembles (25, 26). In
these models, memories are composed of distributed populations
of neurons and the strength of the memory is proportional to the

degree of interconnectivity between neurons in the ensemble.
After incorporating nonmonotonic plasticity, moderate activa-
tion of these distributed ensembles weakens synapses within
the ensemble (thereby reducing behavioral expression of the
memory), and stronger activation strengthens synapses within
the ensemble (thereby increasing behavioral expression of the
memory). Importantly, these models predict that nonmonotonic
plasticity should apply to the initial presentation of an item as
well as to subsequent presentations: When an item is first pre-
sented, its neural representation will have some (nonzero) level
of interconnectivity arising from prior experience with related
stimuli; this initial level of interconnectivity can be reduced (in
the case of moderate activation) or increased (in the case of
strong activation). In keeping with the predictions of these
models, prior studies have found a U-shaped relationship be-
tween activation (in EEG or fMRI) and subsequent accessibility
(21, 22). For example, moderate levels of activation elicited by the
first presentation of a stimulus lead to negative priming (i.e.,
slower subsequent responding), whereas higher levels of activation
lead to positive priming (i.e., faster subsequent responding) (21).
This model can explain the observed relationship between

prediction and memory if strong but unconfirmed predictions
trigger moderate item activation and lesser predictions trigger
weaker activation. Indeed, even the strongest predictions in the
current task may result in only moderate activation: There is only
a single opportunity to associate C items with their context,
predictions were incidental with respect to the categorization
task during encoding, and prediction is internally generated ac-
tivation— such activation is weaker than perceptual activation in
general (27). When activation levels fall in this low-to-moderate
range, the nonmonotonic plasticity hypothesis posits that the
relationship of item activation to memory will be negative: Weak
predictions will be neutral, whereas stronger predictions (leading
to moderate activation) will induce forgetting. By this account,
learning does not depend on the explicit computation of an error
signal. Rather, prediction error is realized implicitly in the brain
as moderate activation of the unconfirmed prediction.
It was hard to know a priori that context-based predictions

would elicit low-to-moderate activation values. Nevertheless,
based on this claim, we can evaluate the nonmonotonic plasticity
hypothesis by exploring the consequences of higher levels of
activation: According to nonmonotonic plasticity, the relation-
ship of item activation to memory should be positive when ac-
tivation values range from moderate (which causes weakening)
to high (which causes strengthening). To test this idea, we related
perception strength—i.e., classifier evidence for the C category
in initial triplets—to subsequent memory. We expected that the
perception of an item would elicit substantially higher activation
levels than its later context-based prediction (27), leading to a
positive relationship with subsequent memory.
As expected, perception strength was robustly greater on av-

erage than prediction strength (t23 = 38.57, P < 0.001) (Fig. 4B,
Lower). Furthermore, the relationship between perception
strength and subsequent memory was reliably positive (β1 = 0.81,
P = 0.002) (Fig. 4A). As shown in Fig. 4B, moderate activation
(derived from strong prediction or from weak perception) led to
worse memory relative to both low activation (weak prediction)
and high activation (strong perception).
To model the combined influence of perception and pre-

diction, we used the probabilistic curve induction and testing
(P-CIT) Bayesian curve-fitting algorithm (22). This algorithm
estimates the posterior distribution over “plasticity curves” relating
activation (classifier evidence during incidental encoding) to
learning (subsequent memory behavior). For each C item, per-
ception in the initial triplet and prediction in the repeated triplet
were treated as separate learning events whose effects were
summed to model recognition. The curves recovered by P-CIT
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were reliably U-shaped, consistent with our interpretation
(Fig. S4).

Discussion
We obtained evidence that context-based prediction error can
lead to forgetting using multivariate pattern analyses of fMRI
data. This finding supports our pruning hypothesis that item
memories are weakened when they are mispredicted by their
context. The nonmonotonic plasticity hypothesis provides a neu-
robiologically plausible mechanism for these findings: A large
prediction error is associated with moderate activation of the
mispredicted item; this moderate activation, in turn, triggers
weakening of the synapses that support the item’s representation
in memory.
There are some boundary conditions for this account. As

we showed, weak predictions induce low activation and leave
memory intact. At the same time, very strong predictions (e.g.,
after extensive experience) may induce activation that is high
enough to shield against pruning or even enhance memory (28).
Moreover, if a prediction is correct, the sum of bottom-up per-
ception and top-down prediction likely will yield activation that
is high enough to shield the memory from pruning.
Note that our use of the term “pruning” is not meant to imply

that traces are being deleted completely from memory. Rather,
the pruning we describe refers to a mnemonic regulation process
in which the accessibility of less-reliable memories is reduced in
a graded manner. This graded decrease in accessibility also might
show up as a decrease in recognition confidence. Indeed, we
obtained the same negative relationship between prediction strength
and memory when we used a continuous measure of memory de-
fined linearly over the range of high-confidence new, low-confidence
new, low-confidence old, and high-confidence old (P = 0.004). We
interpret reduced confidence for mispredicted items as reflecting
weakening of their representation rather than interference during
retrieval from a new memory trace created during the repeated
triplet (SI Text).
Forgetting seems disadvantageous but plays an essential role

in maintaining the efficiency of memory operations (29). Our
study sheds light on the adaptive role of forgetting. Previous
studies examined the impact of controlled retrieval on forgetting,
whereby executive control processes inhibit or suppress unde-
sirable memories competing for retrieval (30). Here we dem-
onstrate, for the first time to our knowledge, that such forgetting
can occur without deploying control processes, simply as a result
of automatic retrieval during context-based prediction. Partic-
ipants reported being unaware that contexts were repeating,
suggesting that automatic retrieval occurs constantly in the

background, pruning invalid memories without burdening our
conscious mind.

Materials and Methods
Participants. Twenty-four adults (14 women; 19 right-handed; mean age,
22.8 y) participated for monetary compensation. All participants had normal
or corrected-to-normal vision and provided informed consent. The study
protocol was approved by the PrincetonUniversity Institutional Review Board.

Stimuli. Participants were shown color photographs of male and female faces
(including from www.macbrain.org/resources.htm), indoor and outdoor
scenes (including from http://cvcl.mit.edu/MM/sceneCategories.html), and
natural and manmade objects. Stimuli were displayed on a projection screen
behind the scanner, viewed with a mirror on the head coil (subtending 8.8 ×
8.8°). Participants fixated a central dot that remained onscreen.

Procedure. Participants completed one scanning session, including the in-
cidental encoding phase, the subsequent memory test, and a functional
localizer. During incidental encoding, participants viewed a sequence of faces
and scenes and made male/female and indoor/outdoor judgments. Un-
beknownst to them, this sequence was generated from triplets. The first two
“context” items in a triplet were either both faces or both scenes, and the
final item was from the other category. Each triplet used novel exemplars.
The context items were shown again after other intervening items (average
lag = 12.5 items), with the final item in the triplet replaced by a new item
from the context category. Other single items, whose preceding context
items never repeated, were inserted between triplets. Three runs of in-
cidental encoding were collected, each lasting 513 s and containing 16 initial
triplets (eight Aface→Bface→Cscene and eight Ascene→Bscene→Cface), their rep-
etitions (eight Aface→Bface→Dface and eight Ascene→Bscene→Dscene, re-
spectively), and 16 control items (eight Xface and eight Xscene). The resulting
112 trials started with a blink of fixation to signal an upcoming trial, fol-
lowed by the stimulus for 1 s and a blank interval of 3.5 s.

The subsequent memory test phase began ∼10 min after encoding. The
memory test was a surprise to participants. It consisted of a recognition task
for 144 old items and 48 novel lure items. There were three types of old
items: 48 final items each from initial (C) and repeated triplets (D), and 48
control items (X). Old items were interleaved with lures randomly. Partic-
ipants judged familiarity on a 4-point scale: 1 = sure old, 2 = unsure old, 3 =
unsure new, and 4 = sure new. As in previous studies (e.g., 17, 18), items
receiving high-confidence “sure old” responses were treated as remembered,
and items receiving other responses were treated as forgotten.

After the test, participants completed two runs of a functional localizer.
Each run contained 15 blocks, with five blocks from each of three categories:
faces, scenes, and objects. Participants judged faces as male or female, scenes
as indoor or outdoor, and objects as manmade or natural. Each stimulus was
presented for 500ms, followed by a blank interval of 1,000 ms. There were 10
trials per block. Each 15-s block was followed by 10.5 s of fixation, which was
treated as a rest category. Total run duration was 400.5 s.

Data Acquisition. Experiments were run with the Psychophysics Toolbox
(http://psychtoolbox.org). Neuroimaging data were acquired using a 3-T MRI
scanner (Siemens Skyra) with a 16-channel head coil. We collected a scout
anatomical to align axial functional slices. Whole-brain functional images for
the encoding phase and functional localizer were acquired with a gradient-
echo echo planar imaging sequence (TR = 1.5 s; TE = 28 ms; flip = 64°; in-
tegrated parallel acquisition technique = 2; matrix = 64 × 64; slices = 27;
thickness = 4 mm, resolution = 3 × 3 mm). High-resolution (magnetization-
prepared rapid-acquisition gradient echo) and coplanar (fast low-angle shot)
T1 anatomical scans were acquired for registration, along with field maps to
correct B0 inhomogeneity.

Preprocessing. The fMRI datawere preprocessedwith FSL (http://fsl.fmrib.ox.ac.
uk). Functional scans were corrected for slice-acquisition time and head mo-
tion, high-pass filtered (128-s period cutoff), and aligned to the first volume.
All multivariate pattern analyses were conducted on voxels within anatomi-
cally delineated ventral temporal cortex (31). We generated these ROIs in
standard space by summing left and right masks of temporal fusiform cortex
and parahippocampal gyrus from the Harvard–Oxford cortical atlas in FSL. We
converted the ROIs to subject space by inverting the transformations obtained
from registering functional scans to standard space.

Classification Analyses. Classification was conducted with the Princeton
Multi-Voxel Pattern Analysis Toolbox (www.pni.princeton.edu/mvpa), using
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penalized logistic regression with L2-norm regularization (penalty = 1). To
validate our classifier, we first performed a cross-validation analysis within
the localizer data. We trained a separate model for each of four categories—
face, scene, object, and rest—using one of the localizer runs and tested it on
the other run (and then swapped training and test runs). All regressors were
shifted forward in time by 4.5 s to adjust for the hemodynamic lag. For each
fMRI volume in the test set, the classifier estimated the extent to which the
activity pattern matched the activity patterns for the four categories on
which it was trained (from 0 to 1). We refer to these category-level pattern
match values as “classifier evidence.”

To classify the incidental encoding data,we trainedamodel on both localizer
runs. We operationalized prediction strength as the activation of a C item’s
category during the repeated triplet. Note that all items in the repeated triplet
were from the other category; for example, if C was a scene, all the items in
the repeated triplet were faces. We averaged classifier evidence over the re-
peated triplet (3–16.5 s after trial onset, adjusted for hemodynamic lag) and
calculated the difference between the evidence for C’s category and A/B/D’s
category (e.g., scene minus face evidence for Aface→Bface→Dface).

We used this relative measure of category information because it has
proven more sensitive in prior studies (22). The pattern of results was
identical when we used evidence for C’s category alone (without subtracting
evidence for A/B/D’s category). To quantify how category information
changed over time, we locked trial regressors for the incidental encoding
phase to trial onset time (Fig. S2B). We then binned three volumes around
the onset of the repeated triplet (baseline) and around each item in the
repeated triplet shifted forward by 3 s to account for the hemodynamic lag:
baseline = −1.5–1.5 s; A = 3–6 s; B = 7.5–10.5 s; and D = 12–15 s.

Logistic Regression Analyses. The main goal of our study was to examine the
relationship between classifier evidence for C in the repeated triplet and
subsequent memory for that item. Characterizing this relationship in
a quantitatively precise manner required a substantial amount of data;
therefore we pooled trials across participants before performing the logistic
regression analyses.

There are two potential concerns with this kind of “super-subject” anal-
ysis. First, effects could be driven by a subset of participants and not generalize
to the population. Therefore we assessed the reliability of our results
across participants (random-effects) using a bootstrap test in which we
resampled entire participants with replacement and performed the same
logistic regression analyses on the resampled data (32). This resampling
provided a population-level confidence interval (CI) for each effect in
terms of the proportion of bootstrap samples (out of 1,000) in which the
effect was present.

The second potential concern is that effects may not be reliable within
individual participants. For example, the supersubject relationship between
prediction strength and subsequent memory might reflect variance across
rather than within participants. To address this concern, we standardized
prediction strength values within each participant (by z-scoring classifier
evidence across C items) and reran all supersubject analyses. Because this step
eliminates differences in mean prediction strength across participants, any
remaining effects are attributable to within-participant variance in pre-
diction strength. The pattern of results was the same as what we obtained
when not standardizing: There was a negative relationship between aver-
age classifier evidence and subsequent memory (β1 = −0.26, P = 0.006), and
the relationship in the D time period was reliably negative (P = 0.004) and
significantly more negative than the relationship in the baseline time period
(P = 0.026).

We also examined the relationship between the perception of C and
subsequent memory for that item. Similar to prediction strength, perception
strength was defined as the relative classifier evidence for C’s category. The
only difference is that we measured this evidence during C’s presentation in
the initial triplet, 4.5 s after its onset. We then performed the same logistic
regression analyses to relate perception to memory.
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Overview of Pattern Similarity Analyses. In the pattern classification
analyses reported in the main text, we quantified the prediction of
C by measuring the amount of classifier evidence for the category
of the C item. To provide converging evidence for our claim that
context-based prediction error induced forgetting, we repeated
these analyses using pattern similarity as a complementary
measure of item prediction. Here, we quantified the prediction of
C by taking the pattern of activity elicited by the perception of C in
the initial triplet and measuring how strongly this pattern was
reinstated in the repeated triplet. Pattern similarity was quantified
as the spatial correlation in activity over voxels in category-se-
lective ventral temporal cortex during the perception of C and
during the repeated triplet (when participants might be predicting
C). Using logistic regression, we then related the correlation for
a given C item to whether it was remembered or forgotten in the
subsequent memory test.
One potential advantage of this approach is that ourmeasure of

prediction of C was based on the pattern match to the perception
of the same item. This analysis stands in contrast to the main
pattern classification analyses, in which the classifier was trained
on different items from the same category presented in a sepa-
rate localizer run. Because the pattern similarity approach com-
putes the match to patterns for specific C items, it can, in principle,
be used to assess how prediction of the C item itself affects sub-
sequent memory. In practice, accomplishing this goal is compli-
cated by the fact that pattern similarity reflects both item-specific
information (1, 2) and also category information. For example, if a
pattern is defined over both face- and scene-selective visual cortex,
then different face exemplars will have higher pattern similarity
with each other than with any scene.
To verify that the relationship between pattern similarity

and subsequent memory reflected item-specific information, we
performed a within-category permutation test in which we re-
peatedly shuffled the pairing of initial and repeated triplets for all
C items from the same category. This approach allowed us to test
whether the relationship between pattern similarity and sub-
sequent memory is stronger when the item matches than when
only the category matches.

Relating Pattern Similarity to Subsequent Memory. To perform the
logistic regression for pattern similarity, we extracted the patterns
of activity evoked by the perception of C in the initial triplet (4.5 s
after its onset) and by the prediction of C in the repeated triplet
(3–16.5 s after triplet onset). These patterns of activity for C
items were obtained from within the corresponding category-
sensitive region of interest (ROI). That is, we extracted the
patterns from the temporal fusiform cortex when C was a face
and from the parahippocampal gyrus when C was a scene. This
selection of the category-selective ROIs reduced the amount of
variance over voxels in the pattern attributable to category in-
formation (thereby isolating item-specific information). These
anatomical regions have been used previously as face- and scene-
selective ROIs, respectively (3); they include the peaks of the
fusiform face area and parahippocampal place area, respectively,
as well as surrounding category-selective voxels that might con-
tribute to representing individual exemplars (4–6).
We then correlated the patterns from perception and pre-

diction for a given C item to obtain a measure of pattern simi-
larity. We interpreted greater correlation as more prediction of C,
given that C was never presented in the repeated triplet and that
patterns were obtained from the ROI selective for the category of

C (note that A, B, and D were from the other category). As
before, we used logistic regression to relate this new measure of
prediction strength to subsequent memory (Fig. S3A). As hy-
pothesized, greater pattern similarity for C was associated with
more forgetting (P = 0.034) (Fig. S3B). Separately correlating
the initial C pattern with the same baseline, A, B, and D time
windows used for the classification analyses revealed that this
trend grew more negative over time in the repeated triplet (Fig.
S3C). These pattern similarity results provide a clear replication
of the pattern classification results.

Ruling out Carryover Effects. One potential concern with the
pattern similarity analysis is that the same A and B context items
were shown in both the initial and repeated triplets. If the pattern
obtained during the perception of C in the initial triplet was
contaminated by lingering traces of A and B, then the observed
pattern similarity in the repeated triplet could reflect the repeated
perception of A and B rather than the prediction of C. The use of
an ROI selective for C but not A and B mitigates this concern. To
rule out this possibility further, we performed additional control
analyses that seeded the pattern similarity analysis with patterns
obtained from the time of A and B in the initial triplet. If the
repeated perception of these items drove the negative relation-
ship, then A and B seeds should yield the same results. However,
no reliable negative relationship with memory for C was observed
when pattern similarity was based on A or B seed patterns (all
Ps > 0.27).

Item-Specific Permutation Analysis. In addition to replicating the
main results, the pattern similarity analysis provides additional
explanatory leverage. By definition, the pattern classification
analysis described in the main text identified information only
about the category of C items. In contrast, the pattern similarity
analysis also might be sensitive to information about specific
exemplars within each category. To examine this possibility, we
conducted a permutation analysis by shuffling the pairing of
initial and repeated triplets so that the category of C was
preserved. A negative relationship between pattern similarity
and subsequent memory that was stronger when the exemplar
matched than when only the category matched would decisively
support our interpretation that forgetting reflects misprediction
of the C item itself.
To perform the permutation analysis, we first identified pairs of

initial and repeated triplets that shared the same context items
and separated them based on whether the C item was a face or
a scene. We then shuffled these pairings 1,000 times within
each category, each time calculating pattern similarity across the
scrambled pairs and relating it to subsequent memory for the C
item in the initial triplet with logistic regression. Based on the
resulting null distribution of 1,000 beta coefficients, a z-score for
the true beta coefficient (when the context items were aligned)
was calculated. To assess the random-effects reliability of this
z-score across participants, we used the same kind of bootstrap
test that was performed for the basic logistic regression analysis
of classifier evidence and pattern similarity. Specifically, we re-
sampled entire participants with replacement and performed the
same permutation test on the resampled data. The distribution of
z-scores across bootstrap samples provides a population-level
confidence interval (CI) on these z-scores.
We found a significantly stronger negative trend at the time of

D for the true pairing of initial and repeated triplets, relative to
the null distribution acquired from shuffled data (bootstrap
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P = 0.036). Because triplet pairings were shuffled within cate-
gory, this result provides evidence that activation of the specific
C exemplar (above and beyond activation of C’s category) con-
tributed to forgetting.

Curve-Fitting Analysis. We used the probabilistic curve induction
and testing (P-CIT) Bayesian curve-fitting algorithm (7) to es-
timate the shape of the “plasticity curve” relating item activation
during the incidental encoding phase (indexed by category
classifier evidence) to recognition during the subsequent mem-
ory test. The P-CIT algorithm approximates the posterior dis-
tribution over plasticity curves (i.e., which curves are most
probable, given the neural and behavioral data). P-CIT generates
this approximation via the following three steps: First, the al-
gorithm defines a parameterized family of curves (piecewise-
linear curves with three segments) and randomly samples
100,000 curves from this parameterized space. Importantly, this
family of curves includes some curves that fit with the non-
monotonic plasticity hypothesis and other curves that do not fit.
Second, for each randomly generated curve, the algorithm as-
signs an importance weight to the curve that explains how well
the curve explains the observed relationship between neural and
behavioral data. Finally, these importance weights are used to
compute the probability of each curve, given the neural and
behavioral data.
Perception and prediction were treated as distinct learning

events, both of which could affect subsequent memory. For each
one of the randomly sampled curves, we used that curve, coupled
with perception- and prediction-strength values (measured using
the classifier), to generate predictions about which C items would
be remembered or forgotten. Specifically, for each item, we
separately computed the expected effect of perception (by taking
the measured perception strength and evaluating the sampled
plasticity curve at that value) and the expected effect of prediction
(by taking the measured prediction strength and evaluating the
sampled plasticity curve at that value). To estimate the probability
that the item would be remembered or forgotten, we summed the
expected effects of perception and prediction and fed this sum
into a logistic function (the parameters of which were estimated
by the model), giving us an estimated probability of successful
recognition for that item. For each sampled curve, we compared
these estimated probabilities of successful recognition (for each
item) with the actual recognition outcomes and assigned an
importance weight to the curve reflecting how well the estimated
recognition outcomes fit with the actual outcomes. This impor-
tance-weight value summarizes how well that particular curve
explains the observed relationship between neural data (i.e.,
classifier measurements of perception and prediction) and be-
havioral data.
After assigning importance weights to each of the 100,000

sampled curves, we generated a new set of samples by taking the
best curves from the previous generation (i.e., the curves with the
highest importance weights) and distorting them slightly. From
this point forward, we alternated between assigning importance
weights to sampled curves and generating new sampled curves
based on these importance weights. We repeated this process for
100,000 iterations (7).
The collection of weighted curves generated by this process can

be interpreted as an approximate posterior probability distribu-
tion over curves; the weight of a curve is thus proportional to its
probability. To generate a mean predicted curve, we averaged
together the sampled curves in the final generation of samples,
weighted by their importance values (Fig. S4). We also computed
credible intervals to indicate the spread of the posterior proba-
bility distribution around the mean curve. We did so by evaluating
the final set of sampled curves at regular intervals along the x axis
(i.e., item activation). For each x coordinate, we computed the

90% credible interval by finding the range of y values that con-
tained the middle 90% of the curve probability mass.
We also computed P(theory consistent), the overall posterior

probability that the true plasticity curve fits with our theory (i.e.,
that it is U-shaped). To compute this probability, we first labeled
each sampled curve as theory-consistent or -inconsistent. Curves
were labeled as theory-consistent if they showed a “dip,” i.e., the
curve dropped below its starting point and then rose above that
starting point, moving from left to right. We then calculated the
proportion of posterior probability mass taken up by theory-
consistent samples. To compute this value, we summed together
the importance weights associated with theory-consistent sam-
ples. This number provides an efficient summary of how well the
data support the nonmonotonic plasticity hypothesis. The Mat-
lab code used to perform the analyses can be downloaded from
http://code.google.com/p/p-cit-toolbox.

Relating Repetition Suppression to Classifier Evidence. We quanti-
fied repetition suppression by first extracting the activity evoked
by the presentation of A and B in the initial and repeated triplets
(4.5–9 s after triplet onset) for each voxel in category-selective
anatomical ROIs (i.e., in temporal fusiform cortex when A and
B were faces and in parahippocampal gyrus when they were
scenes), and then we averaged over voxels within each ROI and
performed the subtraction of initial minus repeated triplets.
Classifier evidence for C and D was obtained in the same manner
as in the main analysis but only during the time window when A
and B were processed. As before, we used logistic regression to
relate the amount of repetition suppression for A and B to the
classifier evidence for each of the C and D categories.

Ruling out Effects of Novelty. The behavioral data nicely fit our
memory-pruning hypothesis. However, one concern is that the
pattern of results (lower memory for C items than for D items)
might be confounded by the novelty of the preceding items in the
trial sequence (i.e., A and B were novel before C and were re-
peated before D). For example, the difference between C and D
may reflect enhanced encoding of D because it stood out as novel
against a context of old items and/or reduced encoding of C
because the preceding new items captured attention. There are
theoretical and empirical reasons to think that contextual novelty
cannot explain our results.
First, it was shown recently (8) that novel items facilitate the

formation of new memory representations for a subsequent item
(pattern separation), whereas preceding familiar items engage
retrieval of existing memory representations and thus reduce
encoding (pattern completion). Because C was preceded by
novel items and D by familiar items, this study would predict
better memory for C than D, whereas we observed the exact
opposite.
Second, a behavioral pilot study we ran controlled for novelty

but observed the same forgetting effect for mispredicted items.
The design was quite similar to the reported functional magnetic
resonance imaging study, but we used pairs of scene images (e.g.,
A→B and C→D) instead of triplets, and these pairs repeated
several times. The prediction of the second item (B) based on the
first item (A) was violated by swapping the first and the second
items across pairs on the fourth repetition (A→B, A→B, A→B,
A→D and C→D, C→D, C→D, C→B). Other pairs (e.g., E→F)
were repeated four times intact as a control condition (E→F, E→F,
E→F, E→F). We measured subsequent memory for the second
items in the violation condition (B and D) and the control condition
(F). Critically, context items in both conditions (A, C, and E) had
equal frequency on the fourth repetition when predictions could be
violated. Nevertheless, memory in the violation condition was sig-
nificantly lower than in the control condition (P = 0.017).
Third, although C and D were, by definition, preceded by

novel and familiar items, the X items had variable contexts. We
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therefore examined memory for X items as a function of the
number of preceding novel items: (i) preceded by a repeated
ABD triplet (one novel, two repeated); (ii) preceded by a re-
peated ABD triplet and another X item (two novel, two re-
peated); (iii) preceded by an initial ABC triplet (three novel);
and (iv) preceded by an initial ABC triplet and another X item
(four novel). If contextual novelty impaired encoding (e.g., for C
vs. D), then memory for X items should decrease as a function
of the number of preceding novel items. However, there was no
effect of these conditions (Ps > 0.17). Indeed, X memory was
numerically highest in the fourth condition, which had the most
preceding novelty.
Finally, to test further whether the familiarity of items pre-

ceding D boosted its encoding, we measured repetition priming
for the A and B items in the initial minus repeated triplets and
then related these priming scores to D memory using logistic
regression. Not surprisingly, we obtained overall repetition priming
in response times (Ps < 0.001): Participants judged the subcategory
of A and B items faster when they were repeated than when they
were novel (45.46 and 47.13 ms faster, respectively). The famil-
iarity account predicts a positive relationship between repetition
priming and D memory, which was not obtained; also, there was
no relationship with C memory (Ps > 0.16).
All these findings suggest that our behavioral data result from

a detrimental effect of prediction violation rather than an effect of
the novelty/familiarity of preceding context items.

Ruling out Effects of Serial Position. During incidental exposure, C
items appeared earlier in the trial sequence than D items (by
definition) andX items (which were distributed uniformly), resulting
in a systematic serial position difference across conditions (Ps <
0.001). This potential confound may explain why memory was
worse for C items than for D and X items.
We were sensitive to this issue when designing the experiment

and attempted to minimize it in two ways. First, the incidental
encoding phase was divided into three runs (each lasting around
9 min), and triplets repeated within run such that the conditions
were spread across all runs. Second, there was a 10-min rest
period between the encoding and test phases to attenuate
recency effects.
Nevertheless, we conducted control analyses to rule out a

contribution of serial position to our results empirically. One
analysis examined (across trials) whether memory for C or D
items could be predicted from their serial position. The logic was
that if serial position was solely responsible for the observed
behavioral differences, then serial position should be related to
subsequent memory within these conditions. However, there was
no relationship for either C or D items (Ps > 0.15).
We also conducted a subsampling analysis in which we reversed

the serial position bias by selecting C and D items so that the
average serial position of D items was earlier than C items. Spe-
cifically, we deleted pairs of the earliest remaining C item and the
last remaining D item within subject until the reversal occurred. As
a manipulation check, this procedure did result in an earlier serial
position for D than C (P < 0.001). Nevertheless, the behavioral
results from the remaining trials were identical to the original
pattern, with worse memory for C than for D (P = 0.040).

These findings rule out serial position as an explanation of
the behavioral data and remain consistent with our pruning
hypothesis.

Arbitrating Between Memory Weakening and Interference During
Retrieval. Our preferred explanation for the decreased recogni-
tion of C items relative to D and X items is that memory for C
items was weakened. However, other potential explanations exist.
For example, it is possible that when C was predicted (but did not
appear) during the repeated triplet, participants encoded that “C
is absent”; later, during the recognition test, this “C is absent”
memory trace might have been activated, competing with the
original C memory and reducing recognition confidence.
When we consider the largely implicit nature of our study,

however, we think that this alternative “memory for absence”
account cannot fully explain our results. Stimuli in the incidental
encoding phase were presented in a continuous stream, and thus
it was impossible to know a priori whether an item was the A, B,
or C item in a triplet. Meanwhile, participants performed an
orthogonal categorization task on these stimuli, and they thought
that measuring performance on this task was the purpose of the
study. Additionally, the context items (A and B) were repeated
only once. Thus, it was extremely hard for a participant to detect
any structure in the stimulus sequence. After completing the
study, we anecdotally asked the participants whether they no-
ticed any regularity during the study phase. Although their an-
swers were not recorded systematically, no participant reported
explicit awareness of the triplet structure. In other words, par-
ticipants were likely not aware of the absence of C, and, conse-
quently, it is unlikely that they formed a declarative trace of the
thought “C is absent.”
Furthermore, even if participants did form such a trace,

knowing that C was predicted-but-absent necessarily implies that
C was presented earlier in the experiment. This knowledge should
increase rather than decrease confidence that C was studied. For
example, imagine that you met a person at a bus stop yesterday,
and you notice that the person is not at the bus stop today. Later,
you run into the person again unexpectedly. Intuitively, the ad-
ditional declarative trace of the absence would help you re-
member that you have met that person before, rather than
impairing the memory.
Another, related possibility is that when C was predicted during

the repeated triplet, the C representation was bound to the D
representation. Later, when C was presented at test, it activated
the D representation, thereby causing interference and reducing
recognition confidence. This account seems unlikely for two
reasons. First, recognition memory tests are thought to provide
direct access to stored memory traces and thus to be relatively
impervious to these kinds of retrieval-interference effects (9),
compared with tests of cued recall. Second, this account also
predicts that C should interfere with D (i.e., when D was pre-
sented at test, the C representation should have come to mind,
causing interference and reducing recognition confidence for D),
but this was not the case: Memory for D items did not differ
statistically from memory for control X items (P = 0.63) and was,
in fact, numerically higher.
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Fig. S1. Behavioral recognition memory. Response proportions for old items from incidental encoding (C, D, X) and new items (Lure). The four response
options are shown on the x axis. Error bars reflect ±1 SEM.
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Fig. S2. Details of pattern classification analyses. (A) Cross-validation results by category from the localizer. Error bars reflect ± 1 SEM. (B) Trajectories over
time of classifier evidence for stimulus categories in initial triplets. On the x axis, time = 0 indicates the actual time of stimulus onset (i.e., not shifted to account
for hemodynamic lag). Classifier evidence peaked around 4.5 s after stimulus onset. Discrete data points were interpolated for visualization. Ribbons reflect ±1
SEM. (C) Same trajectories in the repeated triplets.
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Fig. S3. Pattern similarity analyses. (A) Pattern similarity was computed as the Pearson correlation between the patterns of voxel activity from the initial
triplet when C was perceived and from the repeated triplet when C could have been predicted. The resulting coefficient for each triplet then was related to
subsequent memory for C. (B) The pattern similarity for C was first averaged over all time points in the repeated triplet. Dots indicate the distribution of
similarity for remembered (green) and forgotten (red) items. There was a reliably negative logistic trend, with greater pattern similarity associated with more
forgetting. (C) The same analysis was performed separately during the baseline, A, B, and D time periods. The negative relationship was maximal during the
anticipated time of C. Error bars reflect 95% bootstrap CIs.
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Fig. S4. Curve-fitting analysis. Empirically derived estimate of the plasticity curve relating classifier evidence to subsequent memory performance obtained
using the P-CIT curve-fitting algorithm (7). Behavioral outcomes on the recognition memory test were modeled as the summed effects of perception strength
(during the initial triplet) and prediction strength (during the repeated triplet). The x axis shows rescaled classifier evidence (0 = minimum observed classifier
evidence; 1 = maximum observed classifier evidence), and the y axis represents the change in subsequent memory strength. The solid green line depicts the
mean of the posterior distribution over curves, and the ribbon shows the 90% credible interval (so that 90% of the curve probability mass lies within the
ribbon). P-CIT also returns the overall posterior probability that the curve has a U-shape (as predicted by the nonmonotonic plasticity hypothesis); in this case
P(theory consistent) = 0.99.
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