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Abstract When performing any task for an extended period
of time, attention fluctuates between good and bad states.
These fluctuations affect performance in the moment, but
may also have lasting consequences for what gets encoded
into memory. Experiment 1 establishes this relationship be-
tween attentional states and memory, by showing that subse-
quent memory for an item was predicted by a response time
index of sustained attention (average response time during the
three trials prior to stimulus onset). Experiment 2 strengthens
the causal interpretation of this predictive relationship by
treating the sustained attention index as an independent vari-
able to trigger the appearance of an encoding trial. Subsequent
memory was better when items were triggered from good
versus bad attentional states. Together, these findings suggest
that sustained attention can have downstream consequences
for what we remember, and they highlight the inferential util-
ity of adaptive experimental designs. By continuously moni-
toring attention, we can influence what will later be
remembered.
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Introduction

It is often necessary to sustain attention for long periods of
time, such as when listening to a lecture or driving a car.
Despite this ubiquitous need, and the potential consequences
of losing focus, humans are notoriously bad at sustaining at-
tention. Lapses occur frequently in a wide range of laboratory
studies, such as continuous performance and response inhibi-
tion tasks (e.g., deBettencourt, Cohen, Lee, Norman, & Turk-
Browne, 2015; Robertson, Manly, Andrade, Baddeley, &
Yiend, 1997) and low-prevalence visual search (e.g., Wolfe,
Horowitz, & Kenner, 2005; c.f. Fleck & Mitroff, 2007).
Indeed, sustained attention is characterized by continuous
fluctuations between good and bad attentional states
(Esterman, Noonan, Rosenberg, & DeGutis, 2013;
Esterman, Rosenberg, & Noonan, 2014; Rosenberg,
Noonan, DeGutis, & Esterman, 2013). The purpose of this
study was to investigate the longer-term consequences of such
fluctuations for memory.

Attention and memory are intricately related in general (see
Aly & Turk-Browne, 2017). However, attention is a broad
term that encompasses a wide range of tasks (see Chun,
Golomb, & Turk-Browne, 2011), and the relationship be-
tween attention and memory has been primarily examined
for divided attention (see Craik, 2001) or selective attention
(e.g., Moray, 1959; Turk-Browne, Golomb, & Chun, 2013;
Uncapher, Hutchinson, & Wagner, 2011; Yi & Chun, 2005).
Here, we explore the relationship between another attentional
construct—sustained attention—and subsequent recognition
memory. There has been extensive work investigating the
consequences of fluctuations of sustained attention on
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immediate task performance (Esterman et al., 2013, 2014;
Robertson et al., 1997; Rosenberg et al., 2013), but relatively
less work on the mnemonic consequences. One study found
that mindfulness correlated with sustained attention in a re-
sponse inhibition task and memory for background distractor
scenes (Rosenberg et al., 2013). Other studies have reported
memory differences based on the response demands of the
task (Chiu & Egner, 2015a, 2015b; Makovski, Jiang, &
Swallow, 2013).

Here, we aim to more directly link sustained attention to
memory encoding. That is, we test the hypothesis that the state
of sustained attention leading into a trial determines the mne-
monic fate of that trial. Various response signatures, such as
increased response variability (Esterman et al., 2013, 2014;
Rosenberg et al., 2013) or faster responding (deBettencourt
et al., 2015; Robertson et al., 1997), have been associated with
attentional lapses in continuous performance tasks. Faster re-
sponses are associated with habitual responding as opposed to
carefully attending to stimulus properties. Infrequent trials,
where the habitual response and the correct response differ,
thus provide a critical interrogation of sustained attentional
state. Therefore, in this study, we operationalize the state of
sustained attention as response times (RTs) on preceding trials
and use that to predict behavior on infrequent trials. In
Experiment 1, we show that this measure of attention predicts
whether upcoming information will be encoded successfully.
In Experiment 2, we seek to establish the causal nature of this
relationship using a real-time design in which the attentional
measure is treated as an independent variable for triggering
encoding opportunities.

Experiment 1

The goal of this experiment is to test whether the state of
sustained attention going into a trial predicts memory for that
trial. Specifically, we hypothesize that faster preceding RTs
(indicating poor attention) will be associated with worse
encoding of upcoming information.

Methods

Participants Thirty-two undergraduates (22 female; mean
age = 20.5 years) from Princeton University participated for
course credit or US$10 payment. This sample size was chosen
to be twice as large as previous studies of sustained attention
(e.g., deBettencourt et al., 2015), because the effects on mem-
ory were anticipated to be smaller. One additional participant
was excluded for task performance more than 3 SDs below the
mean. All participants in both experiments reported normal or
corrected-to-normal color vision, and provided informed con-
sent to a protocol approved by the Princeton University IRB.

Stimuli Color scene images (550 indoor, 550 outdoor) were
selected from the SUN database (Xiao, Hays, Ehinger, Oliva,
& Torralba, 2010). They subtended approximately 7° in the
center of a gray background, with a central black fixation dot
(0.1°). The dot turned white after each response.

Apparatus Participants were seated approximately 70 cm
from a CRT monitor (100-Hz refresh rate). Stimuli were pre-
sented using MATLAB (MathWorks, Natick, MA, USA) and
the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

Procedure The design consisted of two phases: sustained at-
tention and surprise memory test. In the sustained attention
phase (Fig. 1a), each participant viewed 500 unique images
for 1000 ms each with no interstimulus interval. Overall, 90%
of the images (450) were from the Bfrequent^ category (e.g.,
outdoor) and 10% (50) were from the Binfrequent^ category
(e.g., indoor); categories were counterbalanced across partic-
ipants. Participants were instructed to press Bh^ with their
right index finger for the frequent category and Bj^ with their
right middle finger for the infrequent category. They complet-
ed a short practice block until achieving 80% accuracy.

In the surprise memory test phase (Fig. 1b), each partici-
pant viewed 200 unique images (100 per category). Half of the
images had appeared in the sustained attention task (Bold^)
and the other half were novel (Bnew^). All 50 old images from
the infrequent category were included, along with 50 of the
450 old images from the frequent category (10 images per 100
trials to balance onset time). Participants were instructed to
press buttons 1–4 with their right index finger to indicate their
confidence that the image had appeared previously (response
mapping presented below each image). The image and map-
ping remained on the screen until response, after which the
response was also shown for 500 ms, followed by a blank
500-ms interstimulus interval. Participants were instructed to
balance their responses across the buttons.

Analysis

The state of sustained attention for a trial was operationalized
as the average RT over the three preceding trials
(deBettencourt et al., 2015; cf. Robertson et al., 1997).
Before relating this measure to memory on a trial-by-trial ba-
sis, we removed the linear drift in RTs throughout the
sustained attention phase to control for generic time-
dependent effects (e.g., practice, fatigue). For subsequent
memory analyses, high-confidence old responses were treated
as remembered and all other responses as forgotten (e.g., Kim,
Lewis-Peacock, Norman, & Turk-Browne, 2014; Wagner
et al., 1998). Across infrequent items within participant, logis-
tic regression was used to predict this binary memory variable
from the RT index of sustained attention at encoding. We
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verified that the effects were consistent across a range of sizes
of the trailing window (Supplemental Fig. 1).

Because some of the data violated the assumption of nor-
mality, all statistics were computed using a nonparametric
random-effects approach in which participants were
resampled with replacement 100,000 times (Efron &
Tibshirani, 1986). Null hypothesis testing was performed by
calculating the proportion of the iterations in which the
bootstrapped mean was in the opposite direction. The mean
and 95% confidence interval (CI) of the bootstrapped distri-
bution are reported as descriptive statistics. All results that
were significant at p < 0.05 with nonparametric tests remained
significant with parametric tests, except where explicitly not-
ed. All data and analyses are available online in a jupyter
notebook with this publication (http://github.com/
PrincetonCompMemLab/deBettencourt_realtimeBehav).

Results

During the sustained attention task, the overall sensitivity of
the category judgments was above chance (A' = 0.92, 0.90–
0.93; vs. chance = 0.5, p < 0.00001). The error rate was higher
for trials from the infrequent category (0.30, 0.26–0.34) versus
frequent category (0.02, 0.02–0.03; p < 0.00001), reflecting
the need to inhibit a prepotent response. Furthermore, our RT
measure of sustained attention—average RT over preceding

three trials—was predictive of the accuracy on infrequent tri-
als: responses were slower before a correct response (520 ms,
502–537) than an incorrect response (446 ms, 422–471; p <
0.00001). This effect remained significant when each trial was
analyzed separately (ΔRTi-1 = 98 ms,ΔRTi-2 = 70 ms,ΔRTi-3
= 58 ms; ps < 0.00001; Supplemental Fig. 1). The timecourse
of this effect over preceding timepoints is depicted in Fig. 2a.

During the surprise memory test, sensitivity was above
chance for items from both the frequent (A' = 0.66, 0.61–
0.69; p < 0.00001) and infrequent category (0.81, 0.79–0.83;
p < 0.00001), although higher for the infrequent category (p <
0.00001). Among the old infrequent items—the basis of the
subsequent memory analysis—38% (33–44) were classified
as remembered and 62% (56–67) as forgotten. The critical test
of our hypothesis concerned the relationship between this
measure of memory at test and the measure of sustained at-
tentional state at encoding. As illustrated in Fig. 2b, this was
evaluated with logistic regression across items within partici-
pant. The resulting slopes were positive across participants (β
= 1.07, -0.17–2.18; p = 0.038 nonparametric, p = 0.087 para-
metric). The distribution of the slopes is shown in Fig. 2c. This
effect was present when using the RT from only the immedi-
ately preceding trial (βi-1 = 0.88; p = 0.038 nonparametric, p =
0.092 parametric; Supplemental Fig. 1). We also replicated
this relationship using the frequent trials (β = 1.69, 0.33–
2.95; p = 0.0065).

b

a Part 1: Sustained attention task

Part 2: Surprise memory test

Frequent
category Rare

category

1s

New

Old

time

1s

time
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Fig. 1 Experimental design. a Participants first completed a sustained
attention task in which they viewed trial-unique scene images and made
an indoor/outdoor judgment. Of the scenes, 90% were from one of these
categories (e.g., outdoor) and 10% were from the other category (e.g.,
indoor). Because of this imbalance, responding correctly to the infrequent
category required inhibiting the prepotent response to the frequent

category. b Participants then completed a surprise memory test in which
they reported their confidence that each scene had appeared in the first
part of the experiment. Of the images, 50% were from the sustained
attention task (old) and 50% were novel to the experiment (new).
Among these, 50% were from the frequent category and 50% were from
the infrequent category
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Discussion

This experiment demonstrates that it is possible to predict
whether an image will be remembered even before it appears,
based on the state of sustained attention. This temporal prece-
dence is consistent with attentional state being part of the
causal chain that determines which memories are formed.
However, this analysis is based on a correlation of idiosyn-
cratic fluctuations in attention not under experimental control.
We seek to strengthen the causal interpretation of this relation-
ship in Experiment 2 using a real-time, adaptive design in
which attentional state serves as an independent variable.

Experiment 2

The goal of this experiment is to test whether triggering
encoding trials based on the current attentional state will in-
fluence what they remember. Specifically, we hypothesize that
images presented while participants are responding faster than
usual (indicating a bad sustained attentional state) will be re-
membered worse.

Methods

Participants Twenty-four undergraduates (15 female; mean
age = 19.2 years) from Princeton University participated for
course credit. This sample size was chosen to be smaller than
Experiment 1 because we anticipated that the triggering de-
sign would lead to larger effects. One additional participant
was excluded for task performance more than 3 SDs below the
mean.

Stimuli and Apparatus Same as Experiment 1.

Procedure As in Experiment 1, participants completed a
sustained attention task and a surprise memory test, with the
same display and response procedure. During the sustained
attention phase, each participant viewed 500 unique images.
The first and last 50 trials had the same distribution of catego-
ries as Experiment 1, with 10% being from the infrequent
category. The middle 400 trials (trials 51–450) began with
100% of trials from the frequent category. Up to 40 of those
400 trials could be replaced with images from the infrequent
category, depending on real-time measurements of behavior.
Specifically, infrequent trials were inserted when our measure
of sustained attention deviated above an upper bound or below
a lower bound. These bounds were recomputed for each trial i
in several steps: analogous to Experiment 1, linear drift in the
RTs was removed from trials 1 to i-1. The overall mean and
standard deviation (SD) of these trials was then calculated
from the residuals. The average RT of the preceding three
trials (i-3, i-2, i-1) was calculated to index momentary
sustained attention. If the moving-window RT was slower
than the mean +1 SD or faster than the mean –1 SD, then
the image for trial i was drawn from the infrequent category
(Fig. 3). Otherwise, the frequent image on trial i was not re-
placed. We required a minimum of three frequent trials be-
tween infrequent trials (to not contaminate the moving-
windowRTmeasure). The average number of infrequent trials
during the real-time period was 27.8 (25.3–30.4). The average
list position for trials triggered due to slower versus faster RTs
was not reliably different (p = 0.28). Participants were not
informed that their RTs controlled when they would be shown
images from the infrequent category.
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Fig. 2 Relating sustained attention and memory. a RTs were slower
before a correct response (blue) vs. incorrect response (pink) to an
infrequent trial (all time points, ps < 0.00001). Individual participants
are plotted in thinner lines and the average in thicker lines. Raw RTs
are reported in the text for this analysis but normalized RTs are depicted
here because they were the input to the subsequent memory analysis
shown in the other panels (statistics were unaffected). b Illustration of
approach for quantifying relationship between sustained attention and

memory in one representative participant. For every item from the
infrequent category, the average RT over the three preceding trials in
the sustained attention task was fit to the binarized recognition
judgment from the surprise memory test using logistic regression. Each
dot is one item and the line is the fitted logistic function. c The logistic
functions for all participants are plotted, revealing a reliably positive slope
on average (p = 0.038). That is, slower preceding RTs correlated with
better memory
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In the surprise memory test, participants were shown all old
images from the infrequent category (including triggered im-
ages), 50 old images from the frequent category, and a
matched number of new images from each category (mean =
177, range = 154–204).

Analysis Infrequent trials from the real-time period were
sorted based on whether they were triggered by faster or
slower RTs. Otherwise, the analyses and statistics were similar
to Experiment 1.

Results

During the sustained attention task, overall sensitivity was
above chance (mean A' = 0.89, 95% CI = 0.88–0.91; vs.
chance = 0.5; p < 0.00001). For the infrequent category, the
error rate was higher for images triggered by faster (0.66,
0.55–0.77) than slower RTs (0.26, 0.21–0.32; p < 0.00001;
Fig. 4a). However, trials triggered by faster (vs. slower) RTs
appeared after shorter sequences of frequent trials (13.5 vs.
19.8; p = 0.013 nonparametric, p = 0.064 parametric). To
investigate whether this accounted for differences in perfor-
mance, we ran a logistic regression analysis to relate the length
of the frequent trial sequence to infrequent trial accuracy.
There was no reliable relationship in either the faster (β = –
0.01, -0.19–0.34; p = 0.56) or slower RTconditions (β = 0.03,
-0.14–0.35; p = 0.43) for participants who made correct and
incorrect responses in each condition (n = 17).

During the surprise memory test, sensitivity was above
chance for items from both the frequent category (A' = 0.71,
0.67–0.74) and the infrequent category (0.80, 0.80−0.82), al-
though higher for the infrequent category (p < 0.00001). The
critical test of our hypothesis concerned the infrequent trials
during the real-time period, and specifically whether memory
was worse for trials triggered in a worse sustained attentional
state. Indeed, participants remembered fewer images from

trials triggered by faster (0.24, 0.18–0.32) versus slower RTs
(0.38, 0.31–0.44; p = 0.00023; Fig. 4b).

One possible explanation for why RT triggering affected
memory is that the state of sustained attention determined
whether a behavioral error would be made, and such errors
prevented encoding into memory. Although this kind of indi-
rect effect would be consistent with our claims about the caus-
al role of sustained attention in memory encoding, we evalu-
ated whether RT per se was additionally responsible by
restricting the subsequent memory analysis to infrequent trials
with correct responses.We included all participants whomade
at least one correct response in both conditions (n = 17). Even
in this restricted sample, participants remembered fewer im-
ages triggered by faster (0.26, 0.17–0.40) versus slower RTs
(0.40, 0.32–0.49; p = 0.0059; Fig. 4c).

Discussion

This experiment employed a triggering design tomore directly
assess the relationship between attentional state and subse-
quent memory. Attentional state, operationalized as fluctua-
tions in RT, was used as an independent variable. The design
of each participant’s session was customized adaptively by
monitoring attentional state until it was particularly good or
bad and then triggering critical probe trials. By directly ma-
nipulating whether items were presented in a good or bad
attentional state, this experiment provides stronger support
for the claim that sustained attention can control memory
encoding.

General Discussion

The goal of this study was to test the nature of the relationship
between moment-to-moment fluctuations in sustained atten-
tional state and episodic memory. In Experiment 1, we con-
firmed that quicker responses predicted upcoming errors in a
sustained attention task and then used this measure of atten-
tional state to predict how well stimuli from the task had been
encoded incidentally. In Experiment 2, we treated RT as an
independent variable in determining the timing of the experi-
mental design, providing an endogenous manipulation of at-
tentional state that allowed us to more precisely probe
encoding during good and bad states. Differences in RT have
been linked to many psychological phenomena. Studies
employing tasks very similar to ours have interpreted RTs as
reflecting cognitive control (Chiu & Egner, 2015a, 2015b) or
motor processes (Makovski et al., 2013). The relative contri-
bution of such processes—above and beyond sustained atten-
tion—to explaining variance in memory will need to be ex-
amined in future studies that better isolate the component pro-
cesses involved.
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The online and adaptive design employed in Experiment 2
represents a methodological approach inspired by real-time
neuroimaging studies (Stoeckel et al., 2014; Sulzer et al.,
2013). This approach could have broad applications for many
other cognitive domains in which performance can be predict-
ed in advance from neural or behavioral measures, including
attentional capture (Leber, 2010), visual detection (Salari,
Büchel, & Rose, 2012), cognitive flexibility (Leber, Turk-
Browne, & Chun, 2008), memory-based decision making
(Duncan, Sadanand, & Davachi, 2012), and memory recollec-
tion (Otten, Quayle, Akram, Ditewig, & Rugg, 2006). Once
predictive measures have been identified in a correlative man-
ner, they can then bemonitored in real time to trigger the onset
of trials and control performance experimentally. Although
this has been done with fMRI (Yoo et al., 2012) and EEG
(Salari & Rose, 2016), we have shown that behavioral studies
also stand to gain. For example, when re-examining the data
from Experiment 1, relatively few trials (25%) exceeded our
bounds for fast and slow RTs from Experiment 2 (beyond ±1
SD). This is precisely the benefit of real-time adaptive de-
signs, as we were able to ensure in Experiment 2 that all
infrequent trials occurred at moments of clearly good and
bad attentional states. Triggering designs can thereby support
strengthened causal inference by leading to a cleaner separa-
tion of cognitive states of interest. By comparing different
real-time measures of sustained attention, such as accuracy,
mean preceding RT, and RT variability (Esterman et al.,
2013, 2014; Rosenberg et al., 2013), it may be possible in
future studies to explain different facets of memory perfor-
mance and assess these ways of operationalizing attention.
This may require adapting these attentional measures for
real-time use: For example, RT variability is often calculated
over a large time window, extending both before and after the
trial of interest, but would need to be fully indexed in advance
such that trials could be triggered in a leading-edge manner.

Beyond the predictive RT relationship for infrequent item
memory, we additionally found better overall memory for

infrequent items, where participants had to deviate from a
prepotent response, compared to frequent items, where partic-
ipants did not. This may seem discrepant with some prior
studies (Chiu & Egner, 2015a, 2015b), which found worse
memory for items where participants had to inhibit their re-
sponse. However, other results have demonstrated memory
improvements for trials that require deviating from the default
response (Makovski et al., 2013). In contrast to these studies,
we used a frequency-based manipulation, such that trials that
required inhibition of a prepotent response and execution of a
different response were exceedingly rare (10%). The greater
distinctiveness of these infrequent items in our study likely
accounts for why they were better remembered.

In conclusion, our study demonstrates that attentional state
can be monitored behaviorally using RT and that such states
can have profound consequences for memory. By tracking
attention in real time, it may be possible to avoid bad atten-
tional states during learning and to reduce the likelihood of
forgetting.
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