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A B S T R A C T

Theories of mental context and memory posit that successful mental context reinstatement enables better retrieval
of memories from the same context, at the expense of memories from other contexts. To test this hypothesis, we
had participants study lists of words, interleaved with task-irrelevant images from one category (e.g., scenes).
Following encoding, participants were cued to mentally reinstate the context associated with a particular list, by
thinking about the images that had appeared between the words. We measured context reinstatement by applying
multivariate pattern classifiers to fMRI, and related this to performance on a free recall test that followed
immediately afterwards. To increase sensitivity, we used a closed-loop neurofeedback procedure, whereby higher
classifier evidence for the cued category elicited increased visibility of the images from the studied context
onscreen. Our goal was to create a positive feedback loop that amplified small fluctuations in mental context
reinstatement, making it easier to experimentally detect a relationship between context reinstatement and recall.
As predicted, we found that greater amounts of classifier evidence were associated with better recall of words
from the reinstated context, and worse recall of words from a different context. In a second experiment, we
assessed the role of neurofeedback in identifying this brain-behavior relationship by presenting context images
again and manipulating whether their visibility depended on classifier evidence. When neurofeedback was
removed, the relationship between classifier evidence and memory retrieval disappeared. Together, these findings
demonstrate a clear effect of context reinstatement on memory recall and suggest that neurofeedback can be a
useful tool for characterizing brain-behavior relationships.
1. Introduction

A key aspect of modern theories of context and memory (e.g., Polyn
et al., 2009) is the ability to deliberately enact mental time travel: rein-
stating contextual features associated with a prior event in order to gain
access to memories from that event (DuBrow et al., 2017; Manning et al.,
2014). These theories predict that, following successful mental context
reinstatement, memory performance should be improved for items
encoded in the reinstated context relative to items from other contexts.

In this study, we set out to obtain neural evidence that deliberate
context reinstatement predicts subsequent memory: We instructed par-
ticipants to mentally time travel to a particular event and measured
(based on brain activity) how well they did this, with the goal of showing
that successful mental context reinstatement predicts successful recall of
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items from that context. Other related work has examined category-
specific activation during a free recall task and found neural evidence
for the to-be-recalled category prior to item recall (Polyn et al., 2005).
However, this work confounded item and context activation, making it
unclear whether the evidence for a category (e.g., face) reflected retrieval
of a specific face item or a general face context.

To measure context recall separately from item recall, we used a
method previously developed in our lab (Gershman et al., 2013), in
which pictures of faces and scenes were used to establish contexts; both
of these categories are known to robustly activate regions of visual cortex
in fMRI (O'Craven et al., 1999). Specifically, we presented task-irrelevant
pictures from one of these categories (either faces or scenes) interposed
between to-be-learned word stimuli, thereby using these images to create
a “context” for these words. Having established this item-context link, we
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were able to use neural activation of the “context” category to track
whether participants were mentally reinstating the context. We have
previously used this approach to predict memory misattribution errors
(Gershman et al., 2013) and to explore intentional forgetting (Manning
et al., 2016).

Despite the utility of this approach, context reinstatement is a subtle
and dynamic internal mental process that is difficult to measure pre-
cisely. To amplify sensitivity to small neural fluctuations indicative of
context reinstatement, we used a fMRI neurofeedback design (deBet-
tencourt et al., 2015; Stoeckel et al., 2014; Sulzer et al., 2013). During
time periods when participants were instructed to think back to a
particular context (e.g., the list studied with interspersed scenes), we
monitored in real time for neural activity relating to the context (e.g.,
scenes), while at the same time showing a stream of images from the
target context (scenes that were actually presented during learning of the
target word list) superimposed on images from the non-target context
(faces that were presented with the other word list). When we detected
brain activity relating to the target context, we increased the relative
visibility of images from the target context. Participants were aware that
the scene/face mixture proportion indicated their success at the context
reinstatement task.

Our goal was to create a positive feedback loop where increased in-
ternal mental context reinstatement led to increased visibility of picture
cues from the target context that triggered even more context reinstate-
ment, thereby amplifying mental context reinstatement and (through
this) boosting our ability to relate these neural fluctuations to memory
performance. In our prior work (deBettencourt et al., 2015) we used a
similar kind of neurofeedback to externalize participants' top-down
attentional state (i.e., whether they were attending to faces or scenes).
Specifically, we instructed participants to attend to faces or scenes while
they viewed superimposed faces and scenes; when their attention to the
target category lapsed (as indexed by reduced category-specific evi-
dence) we made that category less visible. The goal in that study was
cognitive training, i.e., improving participants’ ability to detect and
hence prevent attentional lapses. In the present study, the goal of neu-
rofeedback was to amplify fluctuations in context reinstatement, not for
the purpose of training participants, but rather to improve our ability as
experimenters to detect these fluctuations and relate them to behavior.

We developed a task composed of three phases: encoding, context
reinstatement, and recall (Fig. 1). First, participants studied two lists of
Fig. 1. Study procedure. An example run of the task in Experiment 1. Each run w
encoding phase, participants studied two lists of sequentially presented words, Lists
words with images of a single category (scenes or faces). During the context reinstate
which context (either scenes or faces) to reinstate. Participants were presented with c
proportion was adjusted during the context reinstatement period to reflect the real-t
composite images. The middle row shows the corresponding proportion of the cued
evidence for the cued minus the uncued category for each TR during the context rein
category in the composite image (and less evidence resulted in less of that category). D
probe. Then, they were instructed to freely recall as many words as possible from the
same as the context cue. In invalidly cued runs (2 of 8 runs, 25%), the memory pro
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sixteen words; the first list (List A) was encoded in one of the category
contexts (e.g., with scenes interleaved between the words) and the sec-
ond list (List B) was encoded in the other category context (e.g., with
faces interleaved between the words). After encoding (and a brief period
of math distraction), participants were cued by the list name (e.g., List B)
to reactivate the context associated with either the first or second list.
Then, participants were presented with composite face/scene images,
initialized to equal proportions (0.5/0.5) of each category. During
context reinstatement, participants were instructed to think about the
target category (e.g., faces), and were given real-time neurofeedback
using the method described above. After context reinstatement, partici-
pants were presented with another list name (usually the list that had
been cued, e.g., List B), which served as a memory probe. Their in-
structions were to freely recall as many words as possible from the pro-
bed list in any order. Participants’ vocal responses were recorded in the
scanner during the recall phase.

Critically, in Experiment 1, we manipulated whether the context that
participants were asked to reinstate matched the list they were subse-
quently asked to recall (e.g., reinstate the List B context, then recall List B;
the validly cued condition) or whether the reinstated context mismatched
the list they were asked to recall (e.g., reinstate the List B context, then
recall List A; the invalidly cued condition). This manipulation was
inspired by many studies of visual attention (e.g., Posner, 1980), which
find that valid spatial cues improve performance and invalid cues impair
performance. These findings are often explained in terms of spatial
attention being focused on the cued location, which improves subsequent
processing when the target appears at that location and impairs pro-
cessing when the target appears elsewhere and attention needs to be
reoriented. We expected an analogous effect in the memory domain with
our context reinstatement manipulation, whereby the cue orients rein-
statement towards the targeted list, improving recall from that list and
impairing recall from other lists (Polyn et al., 2009). In order to ensure
the effectiveness of the cueing procedure, cues were valid 75% of the
time (6 of 8 runs). Invalidly cued runs (25%) occurred when the cue (e.g.,
List B) did not match the probe (e.g., List A). Our key prediction was that
the relationship between target-category neural activity and recall
behavior would be positive in the valid condition (i.e., greater reinstate-
ment of the target context should help participants remember items from
the target list) and negative in the invalid condition (i.e., greater rein-
statement of the instructed context should be detrimental because
as composed of encoding, context reinstatement, and recall phases. During the
A & B. Each of the lists was embedded in a different context by interleaving the
ment phase, participants were provided with a list name (e.g., List B) as a cue for
omposite face/scene images, initialized at 50% face and 50% scene. This mixture
ime decoding evidence for the cued context. The top row shows representative
category of the composite image. The bottom row shows the real-time classifier
statement period. Greater evidence for the cued context resulted in more of that
uring the recall phase, participants were presented with a list name as a memory
probed list. In validly cued runs (6 of 8 runs, 75%), the memory probe was the

be was different from the context cue.
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participants were instructed to “mentally time travel” to the wrong
context). We followed this experiment with computational simulations
using a simple model of contextual reinstatement, to refine our intuitions
about how closed-loop neurofeedback could support memory recall.
Finally, in Experiment 2, we investigated if the link between neural
decoding and behavior disappeared without feedback.

2. Experiment 1: materials and methods

2.1. Participants

Twenty-four adults participated in Experiment 1 for monetary
compensation (14 female, 22 right-handed, mean age¼ 20.9 years).
Power analyses could not be performed because of the use of a new
paradigm and unknown behavioral and neural effect sizes. The sample
size was chosen before the start of the experiment to match previous
studies using a similar paradigm (Manning et al., 2016). Six additional
fMRI participants were excluded from Experiment 1: two because of
technical problems with real-time data or audio acquisition, one for
falling asleep during several runs, and three for excessive motion, defined
both within (�3mm) as well as across run (�5mm), due to the lack of
real-time motion correction across runs during the fMRI session. All
participants had normal or corrected-to-normal visual acuity and pro-
vided informed consent to a protocol approved by the Princeton Uni-
versity Institutional Review Board.

2.2. Stimuli

2.2.1. Word lists
Prior to the experiment, we created 16 lists of words, with each list

containing 16 words. Words and lists were derived from those used in a
previous experiment (Manning et al., 2016). In Experiment 1, partici-
pants were presented with 16 lists in total. Each of these lists was
randomly paired with a context of faces or scenes. The order of the words
within lists and the order of lists during the experiment were randomized
for each participant.

2.2.2. Images
Images consisted of grayscale photographs of male and female faces

(Phillips et al., 1998) and indoor and outdoor scenes (Xiao et al., 2010).
These images were combined into composite stimuli by averaging pixel
intensities using various weightings (e.g., 60% face, 40% scene). The
stimuli were displayed on a projection screen at the back of the scanner
bore and viewed with a mirror attached to the head coil.

2.3. Procedure

2.3.1. Localizer runs
Participants completed two localizer runs, viewing blocks of scene,

face, and object images. Each block consisted of 12 images, presented for
1s with a 0.5s period of fixation between each image. A total of 12 blocks
were presented, with 4s of fixation separating each block. Participants
were asked to detect back-to-back image repetitions, and respond by
pressing a button.

2.3.2. Memory runs
Each memory run began with 38s fixation, followed by three phases:

study, context reinstatement, and recall. During the study phase, par-
ticipants studied two lists. For each list, the name of the list (either “LIST
A” or “LIST B00) was presented for 3s, followed by 1.5s fixation. Each word
was presented for 3s. Between each word, 3 images (either faces or
scenes) were presented, each for 1s. In total, each list was composed of 16
words and 45 images, with 6s of fixation at the end. For each memory
run, one studied list was paired with a scene context and the other with a
face context. After the study phase, there was a brief period of math
problems (15s) to distract participants and prevent rehearsal: the
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response mapping for the math problems was first displayed for 1.5s,
followed by 9 math problems for 1.5s each. Each math problem involved
determining whether the sum of two single digit numbers (e.g., 3 þ 4)
was even or odd. After the math section was complete, there was a 3s
fixation period.

At the start of the context reinstatement period, the cue (either “LIST
A00 or “LIST B00) was displayed for 3s. This was followed by 33.75s of 45
images, each displayed for 0.75s. For feedback runs, these images were
composite face and scene images. The first two images (1.5s) were always
initialized at 50% face and 50% scene. The mixture proportions for the
remaining trials were determined on the basis of real-time multivariate
pattern analysis (MVPA) of the fMRI data, ranging from 17% to 98% of
the category of the cued context (83%–2% of the category of the uncued
context, see deBettencourt et al., 2015). In Experiment 1, the images
presented during context reinstatement were composites of the actual
faces and scene images that had appeared during the study phase for the
current memory run. Both the face and scene images appeared in a
random order. At the end of the context reinstatement period, before the
memory probe appeared, there was a 0.75s fixation period.

The recall phase began with a 3s memory probe, indicating the name
of the list to recall (either “LIST A00 or “LIST B00). Then, the fixation dot on
the screen turned green to indicating the start of the recall period. Par-
ticipants were given 45s to recall the items from one of the lists in any
order. At the end of the recall period, the fixation dot turned back to
white for 4s. Then, participants were presented with a point score from
that run's context reinstatement period, corresponding to classifier
decoding performance during the context period (i.e., classifier accuracy
for the target category). No feedback was provided on their recall per-
formance. At the end of the experiment, participants received up to $10
extra corresponding to their cumulative points across all the runs. The
purpose of providing this monetary bonus was to ensure that participants
tried to reinstate context during the reinstatement phase (as opposed to
solely focusing on recall performance).

Participants completed 8 runs of the task (6 valid and 2 invalid).
There were more valid than invalid runs, to ensure that participants
would be motivated to attend to the cue. In addition, the first two runs of
the experiment were always valid. One invalid run occurred during runs
3–5, and the other invalid run occurred during runs 6–8, and the invalid
runs were not permitted to occur back-to-back (i.e., runs 5 and 6).
Behavioral and neural analyses relating to recall were conducted on runs
where it was possible an invalid cue could occur (i.e., runs 3–8). Runs 1
and 2 were excluded so as to minimize the temporal imbalance and any
resulting practice effects between valid vs. invalid conditions. The two
invalid runs were counterbalanced for list cue (one invalid run cued List
A and the other cued List B) and cued context category (one invalid run
cued the scene category and the other cued the face category).

Importantly, participants were aware that what they saw onscreen
during the reinstatement period was controlled by their brain activity.
Before the fMRI session, they were given instructions about the experi-
ment, which included the feedback manipulation. They were told that
the images in the context reinstatement period would reflect our mea-
surements of their mental context, and that the images would get easier
to see if they were reinstating context well. They completed an abbre-
viated run of the task outside the scanner to familiarize themselves with
the experimental design. During that run, they were shown examples of a
composite stimulus, and how the mixture proportion could change due to
our measurements.

2.4. Data acquisition

Experiments were run using the Psychophysics Toolbox for Matlab
(Brainard, 1997; Pelli, 1997). Neuroimaging data were acquired with a
3T MRI scanner (Siemens Skyra) using a 20-channel head and neck coil.
We first collected a scout anatomical scan to align axial functional slices
to the anterior commissure-posterior commissure line. Then, a
high-resolution magnetization-prepared rapid acquisition gradient-echo
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(MPRAGE) anatomical scan was acquired to use for real-time spatial
registration. Functional images were acquired using a gradient-echo,
echo-planar imaging sequence (1.5s repetition time or TR, 29ms echo
time, 3� 3� 3.5mm voxel size, 64� 64 matrix, 192mm field of view,
27 slices).

2.5. Experimental design and statistical analysis

Because some of the data violated the assumption of normality, all
statistics were computed using a nonparametric random-effects approach
in which participants were resampled with replacement 100,000 times
(Efron and Tibshirani, 1986). Null hypothesis testing was performed by
calculating the proportion of the iterations in which the bootstrapped
mean was in the opposite direction. One-sided tests were used for
directional hypotheses and two-sided tests for non-directional hypothe-
ses. Correlations between two variables were estimated with Spearman's
rank correlation after applying robust methods to eliminate the dispro-
portionate influence of outliers in small samples (Pernet et al., 2013).
Outliers were excluded only if they exceeded 2.5 standard deviations
(s.d.) from the mean; all outlier exclusions are noted in the text.

2.6. Real-time analyses

2.6.1. Preprocessing
At the start of the fMRI session, an anatomical region-of-interest (ROI)

was registered to the native functional space using FSL's FLIRT. For
Experiment 1, the temporal lobe was a priori selected to be the ROI given
its known involvement in representing contexts for memories. During the
fMRI session, functional data were reconstructed and prospective
acquisition correction and retrospective motion correction were applied.
After motion correction, the file was transferred to a separate analysis
computer for the remainder of the real-time analyses. The anatomical
ROI mask was applied to reduce the voxel dimensionality. The volume
was spatially smoothed in Matlab using a Gaussian kernel with full-width
half-maximum (FWHM)¼ 5mm. In Experiment 1, a high-pass filter
adapted from FSL (cutoff¼ 100s) was applied in real time. After each
localizer run, the BOLD activity of every voxel was z-scored over time.
During memory runs, the BOLD activity of each voxel was z-scored
starting after the study period based on the mean and standard deviation
until then.

2.6.2. Multivariate pattern analysis
Amultivariate pattern classifier was trained on data from the face and

scene blocks from both localizer runs. Labels were shifted 3 TRs (i.e.,
4.5s) forward in time to account for the hemodynamic lag. For Experi-
ment 1, we conducted MVPA using penalized logistic regression with L2-
norm regularization (penalty¼ 1).

The trained model was tested in real time on brain volumes obtained
during the context reinstatement period. For each volume, the classifier
estimated the extent to which the brain activity pattern matched the
pattern for the two categories (face and scene) on which it was trained
(from 0 to 1); we will refer to this quantity as classifier evidence. The
neurofeedback was based on the difference of classifier evidence for the
task-relevant category minus the task-irrelevant category. Given that this
was a binary classifier, the evidence for the two categories was anti-
correlated. The subtraction means that the difference in evidence ranges
from �1 (complete evidence for the wrong category) to 1 (complete
evidence for the correct category). Wewill refer to this difference score as
the neural context reinstatement score.

2.6.3. Neurofeedback
The neural context reinstatement score for each volume (TR) was

used to determine the proportion of the images from the cued and uncued
categories in the composite stimulus on the next trial. The preprocessing
and decoding of volume i were performed during volume iþ1 and the
neural context reinstatement score for volume i was used to update the
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stimulus mixture for the two trials in volume iþ2. This resulted in a
minimum lag of 1.5s (one TR or two composite images) between data
acquisition and feedback. Moreover, neural context reinstatement was
averaged over a moving window of the preceding three volumes (i�2,
i�1 and i for feedback in volume iþ2), meaning that feedback was based
on brain states 1.5–6s in the past. The averaged neural context rein-
statement score was mapped to a proportion of the task-relevant category
using a sigmoidal transfer function (deBettencourt et al., 2015).

2.7. Behavioral analyses

Vocal responses were recorded during the recall period using a
customized MR-compatible recording system (FOMRI II; Optoacoustics
Ltd.). We used the Penn TotalRecall tool to score and annotate the audio.
All annotations were completed without knowledge of the experimental
design and were verified by an independent scorer who had no knowl-
edge of the experimental manipulation or hypotheses.

2.8. Decoding accuracy

Multivariate pattern classifiers were trained using the face and scene
blocks from both localizer runs. Classifier performance was assessed by
testing the classifier on TRs during the context reinstatement period (as
with classifier training, labels were shifted forward 3 TRs (4.5s) to ac-
count for hemodynamic lag). Two measures were used: classifier evi-
dence for the cued category and accuracy. A TR was labeled as accurate if
the evidence for the cued category was greater than the evidence for the
uncued category. To assess whether there was any bias at the start of the
context reinstatement period, classifier accuracy was calculated for the
data from the last TR during cue presentation (i.e., when participants
were being informed which list to reinstate; earlier TRs could have been
contaminated by lingering signal from list B). To evaluate classifier
performance during the context reinstatement period, accuracy was
computed during the entire context reinstatement phase. Chance was
assessed by permuting labels 100,000 times and recalculating classifier
accuracy for each of these permutations.

2.9. Relationship to behavior

To explain how context reinstatement related to memory behavior,
we first obtained summary measures for each of these components for
each run: (1) how successful participants were at reinstating the cued
context and (2) their memory performance. For this analysis, neural
context reinstatement was operationalized as the classifier evidence for
the cued context minus classifier evidence for the uncued context,
averaged over the context reinstatement period. To boost sensitivity, we
limited this measurement to the subset of TRs for which there was
significantly-above-chance accuracy in decoding the cued context (TRs
3–18; see Fig. 2); we also report results for when we measured neural
context reinstatement using the full set of TRs. Memory performance was
calculated as total number of distinct words that were recalled for the
probed list.

3. Experiment 1 results

3.1. Real-time multivariate decoding of mnemonic context

We first assessed the overall degree to which participants were rein-
stating the cued context during the reinstatement period; we expected
that there would be greater classifier evidence for the cued context,
compared to the uncued context. Consistent with this prediction, the real-
time multivariate pattern classifier reliably decoded the cued context
during the context reinstatement period when averaged across all TRs
(accuracy¼ 58%, 95% CIs 57–60%; chance¼ 50%; one-tailed p< 0.001;
Fig. 2). We further examined which TRs could reliably decode the cued
category; this was true for each of TRs 3–18, one-tailed p< 0.05. At the



Fig. 2. Timecourse of real-time multivariate classifier decoding of context. The
average classifier evidence for each participant across all feedback runs is
plotted in thin gray lines. The average timecourse across participants is plotted
in black, with the gray ribbon indicating the standard error of the mean. The y-
axis shows the classifier evidence for the cued category minus the classifier
evidence of the uncued category. The x-axis shows the number of TRs (1.5s)
during the context reinstatement phase.

Fig. 3. Effects of context reinstatement cue validity on memory in Experiment
1. (a) Memory recall performance. For valid runs, the cue at the start of the
context reinstatement period matched the memory probe at the start of the free
recall period. For invalid runs, the cue did not match the memory probe. Each
gray dot indicates the average number of words recalled per participant (n ¼
24). The height of the bar indicates the population average, and the error bars
indicate the standard error of the mean. Memory performance was enhanced
following valid cues (*p < 0.05). (b) To quantify the relationship between
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start of the context reinstatement period, there was no reliable evidence
for the cued category (mean evidence¼ 0.52, 95% CIs 0.43–0.58;
chance¼ 0.5; one-tailed p¼ 0.73).
classifier evidence and recall, we computed (across runs, within each partici-
pant) the linear fit between classifier evidence and recall, separately for valid
runs and invalid runs. Statistics were computed using the slopes of the linear fits
per condition. Each dot corresponds to the slope of the linear fit in a single
condition (valid or invalid) for each participant. The height of the bar indicates
the population average, and the error bars indicate the standard error of the
mean. The slope relating classifier evidence to behavior differed between valid
and invalid runs (***p< 0.001). (c) For validly cued runs, the amount of context
reinstatement positively related to the number of recalls (p< 0.01). That is,
there was a reliably positive relationship between the evidence for the cued
context minus uncued context (x-axis) and the total number of recalls (y-axis) for
each run. The linear fit across runs within a single participant is depicted as a
gray line. The mean linear fit is depicted in teal. (d) In invalidly cued runs, the
amount of context reinstatement negatively related to the number of recalls
(p< 0.01). The linear fit across runs within a single participant is depicted as a
gray line. The mean linear fit is depicted in orange.
3.2. Behavioral effects

During the validly cued runs of Experiment 1, participants were cued
to mentally reinstate the same context for the list they were later asked to
recall. During the invalidly cued runs of Experiment 1, the context
reinstatement cue did not match the memory probe. If prior context
reinstatement influenced later memory, overall memory recall should be
higher on valid versus invalid runs. Consistent with the idea that rein-
stating an appropriate context boosts memory recall, more items were
recalled in the valid as compared to the invalid condition (Mvalid¼ 5.85,
95% CIs 4.83–7.14; Minvalid¼ 5.29, 95% CIs 4.08–6.75; one-tailed
p¼ 0.03; Fig. 3a).

The key question that we asked in this study pertains to the rela-
tionship between neural context reinstatement and memory behavior: We
hypothesized that higher levels of neural context reinstatement would
correlate with higher levels of recall for validly cued lists and lower levels
of recall for invalidly cued lists.

To test this hypothesis, we computed the relationship between neural
context reinstatement and recall performance across runs (within par-
ticipants, separately for valid and invalid runs) and then averaged this
measure across participants. Each participant had 4 eligible valid mem-
ory runs; for each run, we computed our index of neural context rein-
statement (classifier evidence for the cued vs. uncued context over the
course of the reinstatement period), and also the total number of recalls
for each tested list. This yields a participant-specific scatterplot with 4
points (one per memory run). For each participant, we computed the
slope of the line relating context reinstatement to recall performance. We
then evaluated the reliability of the slope of this line across participants.
For invalid memory runs, we used the same analysis procedure (this time
focusing on the 2 invalid runs) to estimate the relationship between
context reinstatement and recall performance on these runs.

As predicted, we observed a reliably positive relationship between
neural context reinstatement and recall performance across valid runs
(slopevalid¼ 2.48, 95% CIs 0.63–4.32; n¼ 23; one-tailed pvalid¼ 0.005;
Fig. 3b&c). Thus, greater amounts of context reinstatement resulted in
better memory. For invalid runs, we expected there to be a negative
relationship between neural context reinstatement and recall
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performance, and this prediction was also upheld (slopeinvalid¼�5.23,
95% CIs �9.92–1.59; one-tailed pinvalid¼ 0.004; Fig. 3b&d). Importantly,
the relationship between context reinstatement and memory was
significantly more positive for valid than invalid runs (one-tailed
pdiff<0.001). As noted earlier, these correlations were completed using
data from all TRs for which there was above chance classification in the
context reinstatement period, shifted for hemodynamic lag. However,
classification similar results were observed when using data from the
entire context reinstatement period (slopevalid¼ 2.19, 0.82–4.01; one-
tailed pvalid¼ 0.001; slopeinvalid¼�1.66, �3.46–0.54; one-tailed pin-
valid¼ 0.06; one-tailed pdiff¼ 0.002; n¼ 23, 1 outlier excluded that
exceeded 2.5 s.d. from the mean).

Note that the valid-condition results, considered on their own, could
be explained in terms of a third factor (e.g., general alertness) that
positively affects both context reinstatement and recall performance.
However, the valid and invalid results can not together be explained this
way: If general alertness benefits both context reinstatement and recall,
resulting in a positive relationship between them, this relationship
should be observed in both the valid and invalid conditions, but this was
not the case. The most parsimonious account of the valid and invalid
results together is our hypothesis, that context reinstatement facilitates
recall of a one list at the expense of the other.



Fig. 4. Simulating feedback. (a) A schematic of the hypothesized context rein-
statement process with the link mediated by real-time neurofeedback in orange.
Classifier evidence is jointly determined by internal mental contextual rein-
statement and external perceptual evidence for context. Neurofeedback “closes
the loop” by allowing classifier evidence to influence perceptual evidence (b)
Results of computational simulations of the correlation between classifier evi-
dence and memory recall behavior. Simulations were completed for various
manipulations of the feedback as well as perceptual evidence: real-time neuro-
feedback (in which the perceptual evidence reflects the classifier evidence for
the cued category), maximal perceptual input (100% cued category, 0% uncued
category), balanced perceptual input (50% cued category, 50% uncued cate-
gory), no perceptual input (0% cued, 0% uncued), inverted real-time neuro-
feedback (in which the perceptual evidence reflects the classifier evidence for
the uncued category), and yoked-control feedback (in which the perceptual
evidence reflects the classifier evidence from another run. Each violin plot
represents the correlations computed across 10,000 simulations. The mean
correlation is depicted in the horizontal black line, and 95% CIs in the vertical
black line.
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For the analyses reported above, neural context reinstatement and
memory were calculated across the valid and invalid runs separately
within participants. However, the validity of the cue was fairly high
(75%) and therefore the number of invalid runs was low (2 invalid runs
in total, during runs 3–8). When participants did not differ substantially
in context reinstatement for these two runs, this resulted in extreme slope
values. We wanted to be certain that the relationship between context
and memory in the invalid runs was not driven by any extreme values
and/or our outlier exclusion procedure. Therefore, we conducted a
similar analysis, but computing the relationship at the group, rather than
individual, level. First, to keep the analysis focused on within-participant
variance (as opposed to between-participant variance), we normalized
neural context reinstatement scores and number of recalls within con-
dition (valid, invalid) for each participant. Then, we calculated the linear
relationship (i.e., slope) between neural context reinstatement and
memory recall performance across all invalid runs from all individuals.
The relationship between neural context reinstatement and memory
recall performance remained negative (slopeinvalid¼�0.54, �0.83–
�0.21). We assessed the reliability of this relationship by conducting a
bootstrap correlation analysis in which we resampled participants with
replacement and calculated the correlation on each new sample (Kim
et al., 2014). This bootstrapped correlation was reliably negative (one--
tailed pinvalid<0.001). These results provide additional evidence that
reinstating an inappropriate context with neurofeedback prior to recall
adversely influences subsequent memory performance.

These same group-wise analyses were conducted by normalizing
context reinstatement and recalls within the validly cued runs. We found
that the slope computed across valid runs from all participants remained
positive (slopevalid¼ 0.34, 0.10–0.52). A bootstrapped correlation was
calculated by resampling participants with replacement and calculating
the correlation on each new sample; this bootstrapped correlation was
reliably positive (one-tailed pvalid¼ 0.002). Lastly, with these group-wise
analyses the difference between the bootstrapped correlations in the
valid and invalid conditions remained robustly different (one-tailed
pdiff<0.001).

3.3. Simulations

To summarize the results thus far: In Experiment 1, we obtained a
relationship between neural context reinstatement (measured with fMRI)
and subsequent recall, using neurofeedback. This raises the question:
How important was the use of neurofeedback in obtaining these results?
Could we have obtained this relationship between neural context rein-
statement and subsequent recall without using neurofeedback? As dis-
cussed earlier, we used neurofeedback in Experiment 1 because of our
intuition that it improves our ability to measure subtle fluctuations in
context reinstatement, compared to other approaches. To verify this
intuition, we ran simulations comparing our neurofeedback condition to
various other (non-neurofeedback) control conditions. The goal of these
simulations was to consider potentially informative control experiments
that could be run. The code for these simulations is available online.

The simulations sought to capture what occurs during the context
reinstatement period of our experiment (Fig. 4a). Note that these simu-
lations did not use the data from Experiment 1; rather, they used simu-
lated data generated from the model. For each simulated participant, we
ran the simulation six times (corresponding to multiple study-test runs
within a participant). During the first 2 (simulated) TRs, a top-down cue
biased the mental context towards a particular category (scene). The cue
level was varied parametrically across 6 feedback runs, ranging from a
modest amount of evidence for the cued category to a large amount of
evidence for the cued category (0.10, 0.25, 0.40, 0.55, 0.70, 0.85).

During the context reinstatement period, classifier evidence reflected
a mix of bottom-up influences (the category being viewed) and top-down
influences (context reinstatement). Furthermore, in line with existing
theories of mental context drift, the level of internal context reinstate-
ment at one moment was related to the context reinstatement at a
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previous moment. Specifically, internal context reinstatement at a
particular TR was determined by the internal context reinstatement from
the previous TR, as well as by the perceptual evidence from the previous
TR (with the former set to have twice as strong an influence as the latter).
Classifier evidence was determined by previous internal context and the
perceptual evidence (both from 2 TRs ago, to account for the hemody-
namic lag), with additional noise (internal context and perceptual evi-
dence were set to have an equally strong influence on classifier evidence,
and noise was set to have an influence three times stronger than each of
these other factors). At the end of the context reinstatement period, the
average level of internal context reinstatement across the entire rein-
statement period (where 0¼minimal reinstatement and 1¼maximal
reinstatement) was used to determine the number of words recalled, in
the following manner: For each word (out of 16) we chose a random
value (0–1); all words whose random value fell below the average level of
contextual reinstatement were marked as correctly recalled. Finally, we
calculated the correlation between classifier evidence and the number of
words recalled, just as we did in the actual experiment.

In the (simulated) neurofeedback condition, classifier evidence
influenced perceptual evidence, which in turn, influenced internal
context reinstatement. This was intended to emulate the feedback
directionality of Experiment 1, which itself was modeled after our prior
study (deBettencourt et al., 2015). That is, higher levels of classifier ev-
idence for the cued category led to greater visibility of (and thus greater
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perceptual evidence for) the cued category.
We simulated five control conditions to contrast against real-time

neurofeedback: First, we included controls where we held the amount
of perceptual evidence for the cued category constant (at three different
levels: 100%, 50%, 0%). In addition, we included two types of time-
varying feedback: inverted feedback, in which the mapping between
classifier evidence and perceptual evidence was flipped, and yoked-
control feedback, in which the perceptual evidence was selected from a
different run. In the inverted feedback condition, more classifier evi-
dence for the cued category resulted in less perceptual evidence for the
target stimulus category. By re-running these simulations 10,000 times,
we established distributions of correlations between classifier evidence
and memory recall across these conditions.

3.4. Simulation results and discussion

As shown in Fig. 4b, the correlation between classifier evidence and
recall observed in the feedback condition was higher than the other
conditions (Spearman rank correlation: rfeedback¼ 0.46, r100%cued¼ 0.17,
r50%cued¼ 0.20, r0%cued¼ 0.21, rinverted¼ 0.07, ryoked¼ 0.22). Taken
together, these results validate our intuition that closed-loop neuro-
feedback can positively amplify subtle fluctuations in the internal state of
context, in comparison to many other possible control conditions.

In Experiment 2, we wanted to verify experimentally that the neu-
rofeedback condition is especially sensitive to the relationship between
context reinstatement and recall. In an ideal world, we could run all
controls, but we only had the time and resources to focus on one.
Choosing a control condition is not easy for neurofeedback studies, in-
sofar as there are many different alternative hypotheses and each control
condition addresses a subset of these hypotheses. For example, the
yoked-control approach (which we used in deBettencourt et al., 2015)
has several benefits: It controls for the specific stream of images that
participants view, and it also controls for instructions provided to par-
ticipants (both neurofeedback participants and yoked controls are told
that their brain activity is controlling stimulus visibility, which should
control for any general motivational effects of being told that you are in a
neurofeedback experiment). However, it also has several drawbacks: If
we find a worse relationship between brain activity and recall, it could be
due to lack of accurate neurofeedback or because participants get
distracted or frustrated when the feedback does not match their own
sense of their mental state. That is, any observed differences between
conditions might be due to yoking being harmful rather than neuro-
feedback being helpful. Also, if we yoke the images but do not say that
fluctuations in visibility are due to neurofeedback, this fails to control for
nonspecific motivational effects of participants thinking they are getting
brain-based feedback (also, images varying in a way that has nothing to
do with participants’ brain state might be distracting).

We next considered a control condition where pictures from the
target context are 100% visible during the reinstatement period (instead
of being mixed with pictures from the other controls). This control tests
whether merely showing “reminder” images from the target context is
sufficient to reveal a relationship between neural context reinstatement
and recall behavior. If this is the case, then showing fully visible images
from the target context should yield an especially robust effect. This
control also has obvious drawbacks: It does not control for motivation
that comes from participants thinking they are getting neurofeedback,
and it does not match the exact image stream seen by neurofeedback
participants. However, because there is no one perfect control, we
decided to try this 100% visible control condition — showing images
from the target context seemed to us to be the most direct way to trigger
context reinstatement. In the discussion, we talk about inferences that we
can (and cannot) glean from this condition.

4. Experiment 2: materials and methods

Here we compare performance with feedback to a control condition
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in which stimulus information was not modulated by the participant's
mental context. We kept the basic structure of the runs the same as it was
in Experiment 1, but eliminated the second list (participants only studied
one list per run before recall) and removed the invalid condition in order
to focus on the difference between valid neurofeedback and the control
condition. For 6 of the 12 runs of Experiment 2, context reinstatement
was provided as in the first experiment, and participants received neu-
rofeedback with composite face/scene images as in Experiment 1. For the
other 6 non-feedback runs, participants viewed all of the images that had
appeared between words during the encoding phase at full coherence
without any competitive information on the screen (100% cued context).
That is, they viewed fully coherent scenes during the context reinstate-
ment phase, rather than composite face/scene pairs, in order to provide
the strongest possible visual cues for context reinstatement.

4.1. Participants

Twenty-four adults participated in Experiment 2 for monetary
compensation (11 female, 22 right-handed, mean age¼ 19.3 years). The
sample size was matched to that of Experiment 1. Five additional fMRI
participants were excluded from Experiment 2: one due to lack of un-
derstanding the instructions, and four for excessive motion, using the
same standards as in Experiment 1. All participants had normal or
corrected-to-normal visual acuity and provided informed consent to a
protocol approved by the Princeton University Institutional Review Board.

4.2. Stimuli

The word list stimuli for Experiment 2 were a subset of those used in
Experiment 1: we selected 12 (of the original 16) word lists. The word
lists were interleaved with scene images (not faces). During the context
reinstatement portion of the feedback runs, face images (not presented at
study) were overlaid on the studied scenes in order to alter the mixture
proportions.

4.3. Procedure

Participants completed two localizer runs, as in Experiment 1. Also as
before, each memory run was composed of three phases: study, context
reinstatement, and recall. The details of the memory runs were the same
as in Experiment 1, except for the following changes: In Experiment 1,
participants studied two lists in eachmemory run (one with faces and one
with scenes); in Experiment 2, there was only a single list in each study
period (List A), which was always paired with a scene context. Also, in
Experiment 2, all lists were validly cued (i.e., the reinstated context al-
ways matched the list that participants were asked to recall). In Experi-
ment 2, 6 of the runs (50%) were real-time neurofeedback runs and 6 of
the runs (50%) were control, non-feedback runs. Participants were
informed ahead of time that some runs would be feedback runs and some
would not. These runs were counterbalanced such that every 4 runs (i.e.,
1–4, 5–8, and 9–12) contained 2 valid feedback runs and 2 valid non-
feedback runs. As such, there was no temporal imbalance, and all runs
were included in the subsequent analyses. In the feedback runs of
Experiment 2, the images presented during context reinstatement were
composite face and scene images (as in feedback runs from Experiment
1). The scene images were those that had appeared during the encoding
phase in a random order. The face images were randomly selected from a
list without replacement so that each face image was only presented once
throughout Experiment 2. In non-feedback runs during Experiment 2, the
images presented during context reinstatement were scene images (fully
coherent, or 100%). The scene images were those from the study phase,
presented in random order. As in the previous experiment, participants
could earn up to $10 based on the classifier decoding during the context
reinstatement phase. They saw their scores at the end of the run, when
the recall period had ended. The payment bonus was derived from the
cumulative score across all runs (both feedback and non-feedback).



Fig. 5. Feedback mediates the link between context reinstatement and memory
in Experiment 2. (a) Memory recall performance. In feedback runs, validly-cued
feedback was provided during the context reinstatement period. In non-
feedback control feedback runs, there was no real-time feedback during the
context reinstatement period. Each dot corresponds to the average number of
recalls for a participant (n¼ 24). The height of the bar indicates the population
average. The error bars indicate standard error of the mean. Memory perfor-
mance did not reliably differ between these feedback and non-feedback condi-
tions (p > 0.1). (b) To quantify the relationship between classifier evidence and
recall, we computed (across runs, within each participant) the linear fit between
classifier evidence and recall, separately for feedback runs and non-feedback
runs. Statistics were computed using the slopes of the linear fits per condition.
Each dot corresponds to the slope of the linear fit in a single condition (feedback
or no feedback) for each participant. The relationship between context rein-
statement and memory performance was reliably greater in the feedback con-
dition than in the non-feedback condition (**p< 0.01). (c) Evidence for the cued
context in the feedback condition was positively related to the number of recalls,
replicating the effect in the valid feedback condition of Experiment 1 (p< 0.05).
The linear fit for each participant is depicted as a gray line. The teal line is the
mean fit across the population. (d) Evidence for the cued context in the non-
feedback control condition was not positively related to memory recall perfor-
mance (p> 0.1). The black line is the mean fit across the population.
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4.4. Data acquisition, statistical analysis, real-time analysis

Data acquisition and (offline) statistical analysis methods were
identical to the methods used in Experiment 1. The real-time analysis
methods were mostly the same as in Experiment 1, except for the
following changes: First, in Experiment 2, the temporal lobe ROI that we
used in Experiment 1 was expanded to also include the occipital lobe.
This decision was based on offline analyses of the data from Experiment 1
that demonstrated that including the occipital lobe resulted in higher
overall classifier accuracy. Second, in Experiment 1, a high-pass filter
adapted from FSL (cutoff¼ 100s) was applied in real time, but in
Experiment 2, no such high-pass filter was applied (since the run length
was shorter). Third, in Experiment 1, we conducted MVPA using penal-
ized logistic regression with L2-norm regularization (penalty¼ 1), but in
Experiment 2 (based on the results of offline reanalysis of data from
Experiment 1 to optimize classification), we modified the logistic
regression algorithm for Experiment 2 to have L1-norm regularization
(penalty¼ 1). We calculated classifier evidence for the cued context
using the same TRs in Experiment 2 that had previously been used in
Experiment 1 (TRs 3–18).

5. Experiment 2: results

By design, the feedback and control non-feedback conditions differed
in the overall amount of context-relevant information on the screen. In
the non-feedback runs, participants were presented with strong context
cues via fully coherent images during the reinstatement phase. On the
other hand, in neurofeedback runs, there is overall weaker perceptual
evidence on the screen, but there is a link between what the participant
sees and what their internal context is. Given these bottom-up perceptual
differences, it is perhaps unsurprising that the conditions differed in the
total amount of classifier evidence decoded during the context rein-
statement period. During the runs with feedback, when participants
viewed composite face/scene mixtures, the average accuracy of the
multivariate pattern classifier was 58%, which was reliably above chance
(95% CIs 49–67%; chance¼ 50%; p¼ 0.037), as in Experiment 1. During
the control runs without feedback, when participants viewed unmixed
images, the average accuracy of the multivariate pattern classifier was
90% (88–93% chance¼ 50%; one-tailed p< 0.001) and this was reliably
greater than the feedback runs (one-tailed p< 0.001).

The larger goals of this experiment were to (a) replicate the (valid-
condition) effects observed in Experiment 1 and (b) investigate whether
the relationship between neural context reinstatement and memory
recall was observed in a condition without closed-loop neurofeedback.
Our hypothesis was that the link between neural context reinstatement
and memory recall is fostered by our neurofeedback procedure, and
therefore would be larger in the feedback condition than in the non-
feedback condition.

While the intent of the feedback manipulation was to boost sensitivity
to the brain-behavior relationship (between neural context reinstatement
and recall), not to boost overall recall, we nonetheless looked at the ef-
fects of the feedback manipulation on recall performance. We found no
reliable difference between the average number of words recalled in
control, non-feedback runs and neurofeedback runs (recallsfeed-
back¼ 8.88, 7.75–10.22; recallscontrol¼ 9.10, 7.94–10.30, two-tailed
p¼ 0.44; Fig. 5a–c).

Next, we repeated the analyses developed during the first experiment,
to examine whether neural context reinstatement during feedback runs
relates to subsequent memory recall performance. Indeed, we replicated
the positive relationship between neural context reinstatement in validly
cued runs and memory performance, this time using an entirely different
group of participants (slopefeedback¼ 1.64, 0.15–3.29, one-tailed p¼ 0.02;
n¼ 24, Fig. 5b&c).

Lastly, we investigated whether this same positive relationship was
present without neurofeedback. In fact, there was no such relationship
between context reinstatement and memory performance in the runs
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without feedback (slopenofeedback¼¡3.60, ¡7.49– ¡0.44; one-tailed
p¼ 0.98, n¼ 23, 1 outlier excluded that exceeded 2.5 s.d. from the
mean; Fig. 5b&d); the relationship was actually reliably negative. The
difference in slope between the feedback and non-feedback conditions
was reliable (one-tailed pdiff¼ 0.004). These results fit with our hypoth-
esis that neurofeedback makes it easier to identify a link between context
reinstatement and recall performance.

It is notable that recall levels were similar across conditions even
though classifier evidence was much higher in the non-feedback condi-
tion. If classifier evidence perfectly tracked contextual reinstatement
(which then drives recall), we would expect higher levels of recall in the
non-feedback condition. The fact that recall levels were matched there-
fore shows that classifier evidence does not perfectly track contextual
reinstatement. A better account of classifier evidence in our studies is that
it is affected both by bottom-up perceptual evidence for faces/scenes
(which is much higher in the non-feedback condition, and does not
directly affect memory) and contextual reinstatement (which does
directly affect memory). This hypothesized pattern of relationships is
built into our simulations (see Fig. 4). This model helps to explain why
classifier evidence can be related to recall (as was shown in Experiments
1 and 2) but also can dissociate from recall (as is evident from the finding,
here, that feedback vs. non-feedback in Experiment 2 affects classifier
evidence but not recall).
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6. Discussion

In the studies presented above, we demonstrated that context rein-
statement (measured with fMRI) predicts subsequent free recall success:
Reinstating the correct context boosts recall success (Experiment 1,
replicated in Experiment 2) and reinstating the incorrect context reduces
recall success (Experiment 1). These results extend prior work by Polyn
et al. (2005) and others (e.g., Morton et al., 2013), by showing that it is
specifically context (not item) reinstatement that drives this effect. In this
study, contexts and to-be-learned items were different types of stimuli
(contexts were face or scene pictures; items were uncategorized words).
Furthermore, the neurofeedback was derived from a multivariate pattern
classifier that had been trained on an independent localizer period
without any words. Taken together, these features of the design make it
extremely unlikely that the classifier (applied during the reinstatement
period) was picking up directly on recall of words, as opposed to context
activation. One intermediate possibility (fully consistent with our theo-
retical account) is that participants were recalling some words during the
reinstatement period, which caused context activation (which was then
detected by the classifier). However, we think that even this intermediate
interpretation is somewhat unlikely: During the reinstatement period, we
instructed participants to focus on the images so as to discourage using
the reinstatement time to rehearse words. Also, participants were told
that they would receive additional monetary reward based on activating
the correct context during the reinstatement period, which should have
further encouraged them to focus on context reinstatement as opposed to
word recall during this period.

Our intent in using neurofeedback was to boost sensitivity to small
fluctuations in context reinstatement by amplifying them, thereby mak-
ing it easier to identify a relationship between context reinstatement
(measured neurally) and behavior. That is, we are using neurofeedback
to improve measurement sensitivity as opposed to using it as a perfor-
mance booster. Simulations that we ran (comparing our neurofeedback
condition to various controls) support the intuition that neurofeedback
can boost experimental sensitivity.

Experiment 2 provides some support for the claim that neurofeedback
is especially useful for identifying the relationship between context
reinstatement and recall behavior. In this experiment, we compared
neurofeedback to a condition where images from original context were
100% visible (we expected that this would be the strongest possible
reinstatement cue); we observed a significantly larger relationship be-
tween our neural measure of context reinstatement and recall behavior in
the neurofeedback condition than in the 100% visible control condition.
Previous studies have demonstrated that providing real-time fMRI can
reveal insights about cognition (e.g., Cortese et al., 2016; Lorenz et al.,
2018). Here, we extend that finding to demonstrate neurofeedback can
more tightly link fluctuations of internal mental context with memory
retrieval.

Having said this, our conclusions about the specific role of feedback in
identifying this relationship are necessarily preliminary. As noted earlier,
different control conditions address different issues, and no single control
condition can establish that neurofeedback is necessary. The 100%-
visible control condition that we used in Experiment 2 may have failed to
show an effect because it lacked neurofeedback; alternatively, it may
have failed to show an effect for other reasons. For example, there was
less variability in classifier evidence in the control condition than the
neurofeedback condition— this restricted range effect may have made it
harder to link classifier evidence to behavior in this condition. In future
work, it will also be highly informative to look at a zero-visibility control
condition (i.e., where the screen is blank during the reinstatement
period); this control will tell us whether internal mental context rein-
statement on its own is sufficient to drive a relationship between brain
activity (during the reinstatement period) and recall behavior. Other
future directions for this work could explore how brain/behavior links
are modified if classifier is returned from other neural regions or net-
works known to be involved in context reinstatement that were not
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explored here.
Another important future direction for this work is to improve the

specificity and sensitivity of our neural measure of context reinstatement.
As noted above, our category classifier (applied to occipitotemporal re-
gions) does not perfectly track context reinstatement in our paradigm,
insofar as it is also strongly influenced by bottom-up perception. It is well
known that other brain regions beyond temporal and occipital lobes are
strongly involved context reinstatement (in particular, the posterior
medial network; Ranganath and Ritchey, 2012). Incorporating informa-
tion from these networks may improve the specificity of our classifier
readout; this, in turn, could improve the correlation between classifier
evidence and behavior, and it could also increase the usefulness of
feedback, possibly to the point where we would see a net improvement in
recall in the feedback (vs. non-feedback) condition.

In closing, it is important to emphasize that neurofeedback can be
used for multiple purposes: In other, recent neurofeedback studies,
feedback has been used to drive learning. For example, this technique has
been used for training participants to improve their sustained attention
performance (deBettencourt et al., 2015), training new associations (as in
Amano et al., 2016; see also deBettencourt and Norman, 2016), and
reducing established fearful associations (Koizumi et al., 2017). Recently,
researchers have used real-time fMRI to link behavior and neural activity,
e.g., to dissociate confidence from accuracy (Cortese et al., 2016), to link
brain activity with experience in a focused attention task (Garrison et al.,
2013), to optimize experimental design (Lorenz et al., 2016), and to
characterize a multidimensional task space (Lorenz et al., 2018). Here,
we used neurofeedback in a potentially complementary way, to amplify
brain activity fluctuations and improve measurement sensitivity for a
cognitive process (context reinstatement) that we think is important for
memory.

7. Conclusions

In this study, we have demonstrated that closed-loop neurofeedback
is a useful tool for testing theories of memory retrieval; here, we used it to
establish a relationship between context reinstatement (prior to the onset
of recall) and memory performance. This technique could be expanded to
other experiments in which context has a major role. For example,
closed-loop neurofeedback could be used in a task where participants are
asked to “flush” context instead of recover context. This process of
eliminating context has been demonstrated to have a critical role in
intentional forgetting (Manning et al., 2016; Sahakyan and Kelley, 2002).
Eventually, it might be possible to further develop this technique to
provide training for context reinstatement, and to study and treat psy-
chiatric disorders that involve context-cued recall, such as addiction and
post-traumatic stress disorder.
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