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The visual system is remarkably efficient at extracting infor-
mation that is not directly available in the environment, such 
as the general properties of objects in a group and the relation-
ships among objects over space and time. For example, when 
looking out at a classroom, instructors can readily assess the 
number of students who are present and get a sense of their 
general level of enthusiasm and comprehension. In addition, 
throughout the semester, instructors learn which students tend 
to sit together and where they sit in the room. These two kinds 
of processing are inherently statistical: They involve the 
aggregation of samples (e.g., the group of students on a given 
day or an individual student’s neighbors over time), as well as 
the distillation of these samples to statistics (e.g., averages or 
joint probabilities).

These examples reflect two different types of visual statisti-
cal processing that have been identified in past research. One 
type, statistical summary perception, involves the extraction 
of summary statistics over sets of objects (Ariely, 2001). In 
studies of statistical summary perception, observers are briefly 
presented with an array of objects and asked to discriminate or 
report a summary statistic, such as mean size (e.g., Ariely, 

2001; Chong & Treisman, 2003, 2005). Statistical summary 
perception occurs for many feature dimensions, including ori-
entation (e.g., Parkes, Lund, Angelucci, Solomon, & Morgan, 
2001), spatial position (e.g., Alvarez & Oliva, 2008), speed 
(e.g., Emmanouil & Treisman, 2008), and facial expression 
(e.g., Haberman & Whitney, 2007); can be updated continu-
ously over time (Albrecht & Scholl, 2010); and occurs quickly 
and effortlessly without depending on an explicit tally of, or 
even knowledge about, the individual objects in a group (e.g., 
Alvarez & Oliva, 2008; Ariely, 2001).

The other type of visual statistical processing, statistical 
learning, involves the extraction of relationships among indi-
vidual objects over repeated experience (Perruchet & Pacton, 
2006; Saffran, Aslin, & Newport, 1996; Turk-Browne, Scholl, 
Chun, & Johnson, 2009). In studies of statistical learning, 
observers are presented with spatial configurations or temporal 
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The visual system is an efficient statistician, extracting statistical summaries over sets of objects (statistical summary perception) 
and statistical regularities among individual objects (statistical learning). Although these two kinds of statistical processing have 
been studied extensively in isolation, their relationship is not yet understood. We first examined how statistical summary 
perception influences statistical learning by manipulating the task that participants performed over sets of objects containing 
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learning, and extracting statistical regularities impeded statistical summary perception. This mutual interference suggests that 
statistical summary perception and statistical learning are fundamentally related.
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sequences that, unbeknownst to them, contain regularities in the 
co-occurrence of features or objects. Statistical learning oper-
ates in multiple modalities (Conway & Christiansen, 2005) and 
over many feature dimensions, including shape (e.g., Fiser & 
Aslin, 2001), spatial location (e.g., Chun & Jiang, 1998), color 
(e.g., Turk-Browne, Isola, Scholl, & Treat, 2008), and action 
(e.g., Baldwin, Andersson, Saffran, & Meyer, 2008); can be 
observed throughout development (e.g., Kirkham, Slemmer, & 
Johnson, 2002) and in nonhuman species (e.g., Toro &  
Trobalón, 2005); occurs only for attended input but proceeds 
without conscious awareness (Turk-Browne, Jungé, & Scholl, 
2005); operates hierarchically (Orbán, Fiser, Aslin, & Lengyel, 
2008) but produces flexible representations that transfer 
between space and time (Turk-Browne & Scholl, 2009); and 
leads to implicit anticipation of future events and stimuli (Turk-
Browne, Scholl, Johnson, & Chun, 2010).

Although statistical summary perception and statistical 
learning have been studied extensively in isolation, their rela-
tionship is not yet understood. On the surface, the two pro-
cesses are different in many respects, including the time scale 
over which they operate (single exposure vs. repeated expo-
sures) and the types of knowledge they produce (general prop-
erties of groups vs. relationships between specific objects 
within groups). Thus, they might not be related in any mean-
ingful way. However, at a deeper level, the two processes 
might depend on shared statistical and attentional mecha-
nisms, and thus interact. Such interactions could have benefi-
cial or detrimental consequences for the efficacy of either 
process. For example, knowledge about statistical regularities 
reduces visual short-term memory load (Brady, Konkle, & 
Alvarez, 2009) and may therefore result in more accurate sum-
mary estimates. In contrast, if statistical summary perception 
and statistical learning depend on similar computations, 
engaging in one process may interfere with the other.

In three experiments, we sought to characterize the rela-
tionship between these two forms of visual statistical process-
ing. We examined how computing summary statistics 
influences statistical learning and how learning regularities 
influences statistical summary perception. In Experiment 1, 
participants performed a summary task or one of two control 
tasks on arrays of oriented lines whose co-occurrences, unbe-
knownst to participants, exhibited statistical regularities. To 
assess the effect of statistical summary perception on statisti-
cal learning, we examined how calculating the mean orienta-
tion of arrays of lines affected performance on a subsequent 
test of line-pair learning. In Experiment 2, participants per-
formed a summary task on arrays that did or did not contain 
line pairs. To assess the effect of statistical learning on statisti-
cal summary perception, we examined how the presence of 
pairs affected judgments of mean orientation. In Experiment 3, 
participants performed a summary task on arrays containing 
line pairs that had or had not been learned in advance. To 
obtain converging evidence for an effect of statistical learning 
on statistical summary perception, we examined how prior 
learning of the pairs affected judgments of mean orientation.

Experiment 1

The goal of Experiment 1 was to assess whether and how com-
puting the mean orientation of lines in an array would influ-
ence the learning of line pairs embedded in the array.

Participants
Fifty-four undergraduates (23 male, 31 female; mean age = 
20.0 years) from Princeton University participated for course 
credit. All participants had normal or corrected-to-normal 
vision and provided informed consent. The experiment was 
approved by the institutional review board at Princeton 
University.

Stimuli
The stimuli consisted of eight black lines oriented at 0°, 15°, 
45°, 75°, 90°, 105°, 135°, and 165° (0° = horizontal, 90° = 
vertical). The eight lines were randomly assigned to four pairs 
without replacement, and each of the four pairs was assigned 
to a horizontal (one pair), vertical (one pair), or diagonal (two 
pairs) configuration (Fig. 1a). These assignments were deter-
mined independently for each participant, and remained con-
stant throughout the experiment. In the first phase of the 
experiment, the lines were presented in arrays. Each array con-
sisted of three pairs whose grand mean orientation was not 
90°. These three pairs were overlaid on an invisible 3 × 3 grid, 
and their positions were pseudorandomly determined. Because 
of the size of the grid, at least one line in each pair was adja-
cent to at least one line from a different pair. This arrangement 
of the arrays ensured that statistical learning could not be facil-
itated by segmentation cues other than co-occurrence (e.g., 
grouping). In all conditions, 20% of the arrays contained a 
duplicate orientation: One line in a randomly selected pair was 
changed to match the orientation of the other line from that 
pair.

Apparatus
Participants were seated 70 cm from a Viewsonic CRT moni-
tor (refresh rate = 100 Hz). Stimuli were presented using 
MATLAB (The Mathworks, Natick, MA) and the Psycho-
physics Toolbox (Brainard, 1997; Pelli, 1997). The invisible 
grid on which the line arrays were overlaid subtended 13.6° by 
13.6° of visual angle.

Procedure
Participants were randomly assigned to one of three condi-
tions: passive viewing, summary, or control (n = 18 in  
each condition). The experimental procedure in all conditions 
consisted of two phases: familiarization and test. During the 
familiarization phase (Fig. 1b), each participant viewed  
100 arrays of lines. Each array was presented for 2,000 ms, 
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followed by an interstimulus interval of 1,000 ms. In the  
passive-viewing condition, participants were instructed to 
simply pay attention to the arrays. This canonical familiariza-
tion task (e.g., Fiser & Aslin, 2001) provided a measure of the 
baseline level of statistical learning. In the summary condi-
tion, participants pressed a number key to indicate whether the 
mean orientation of all lines in each array fell to the left (1) or 
right (9) of the vertical meridian. This task allowed us to assess 
the influence of statistical summary perception on statistical 
learning. In the control condition, participants pressed a num-
ber key to indicate whether any orientations had (1) or had not 
(9) been duplicated in each array. This condition was included 
as a dual-task control to ensure that any difference in perfor-
mance between the passive-viewing and summary conditions 
did not simply reflect the need to perform a secondary task in 

the summary condition. Five example arrays were presented to 
participants in all conditions as practice before the familiariza-
tion phase began.

After the familiarization phase, all participants completed 
the same two-alternative forced-choice test phase. On each 
trial, two pairs of lines were presented side by side for 2,000 
ms (Fig. 1c), and participants made an unspeeded response, 
pressing a number key to indicate whether the left (1) or right 
(9) pair seemed more familiar. One of these pairs (the target 
pair) was one of the pairs from the familiarization phase, and 
therefore had been presented multiple times. The other pair 
(the foil pair) consisted of one line from that target pair and 
one line from a different target pair (all lines were presented an 
equal number of times); thus, the two lines in the foil pair had 
a much lower probability of having occurred next to each 
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Fig. 1. Design and results for Experiment 1. Eight black lines of various orientations were grouped into four pairs, which were assigned 
to horizontal, vertical, and diagonal configurations (a). During the familiarization phase (b), arrays of these pairs were presented to 
participants. In each array, the line pairs were overlaid on a 3 × 3 grid, which was invisible to participants; the pairs’ positions on the 
grid were selected pseudorandomly. Participants in the passive-viewing condition simply paid attention to the arrays; participants in the 
summary condition indicated whether the mean orientation of all lines in each array fell to the left or right of the vertical meridian; and 
participants in the control condition indicated whether any orientations had been duplicated in each array.  The third illustrated array is an 
example of an array with a duplicate orientation. During each trial of the test phase (c), participants were presented with two line pairs: 
a target pair that had been shown multiple times during the familiarization phase and a foil pair that consisted of one line from the same 
target pair and one line from a different target pair. Participants indicated which pair was more familiar. The graph (d) shows the mean 
percentage of correct answers during the test phase for each condition. Error bars represent ±1 SEM.  The asterisks indicate significant 
differences from chance performance and significant differences between conditions (*p < .05; ***p < .001).
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other during the familiarization phase compared with the two 
lines in the target pair. Each of the four target pairs was tested 
against two foil pairs: The first foil pair contained one line 
from the target pair, and the second foil pair contained the 
other line. Each target-foil comparison was repeated once, so 
that there were 16 trials in all.1 The order of test trials was 
randomized, and the location of the target pair (i.e., on the left 
or right) was counterbalanced across trials. Because all indi-
vidual lines in the target and foil pairs were equally frequent 
during the familiarization phase, participants could choose the 
target pairs as more familiar only if they had learned which 
lines had co-occurred during the familiarization phase.

Results and discussion
During the familiarization phase, mean accuracy in the sum-
mary condition was 57.8% (SD = 13.0%), which was reliably 
above chance (50%), t(17) = 2.53, p < .03, d = 0.60. Mean accu-
racy in the control condition was 81.0% (SD = 12.9%), which 
was also above chance, t(17) = 10.17, p < .001, d = 2.40.

As shown in Figure 1d, test performance differed across the 
familiarization conditions. In the passive-viewing condition, 
the target pair was chosen as more familiar than the foil on 
56.3% (SD = 11.7%) of test trials; this level of accuracy was 
reliably above chance (50%), t(17) = 2.26, p < .04, d = 0.53. 
This result demonstrates that our procedure can elicit statisti-
cal learning, and it provided a baseline for comparison. Mean 
accuracy in the control condition was 65.3% (SD = 11.0%), 
also above chance, t(17) = 5.90, p < .001, d = 1.39. This result 
demonstrates that engaging in a secondary task does not nec-
essarily impair statistical learning, and can in fact improve it, 
t(34) = 2.38, p < .03, d = 0.79. Critically, mean accuracy in the 
summary condition was 48.6% (SD = 10.4%), which did not 
differ from chance, t(17) = 0.57, p = .58, d = 0.13. This level 
of accuracy was lower than that in the passive-viewing condi-
tion, t(34) = 2.07, p < .05, d = 0.69, and the control condition, 
t(34) = 4.68, p < .001, d = 1.56. Given that the line pairs were 
learnable in the passive-viewing condition and that perform-
ing a secondary task did not interfere with learning in the con-
trol condition, these results suggest that statistical summary 
perception prevents statistical learning.

Although the level of task performance during the familiar-
ization phase was higher in the control condition than in the 
summary condition, t(34) = 5.36, p < .001, d = 1.79, we think 
it is unlikely that the difficulty of the familiarization tasks 
accounts for the differences in statistical learning for at least two 
reasons: First, passive viewing could be considered the easiest 
task of all, yet participants in the passive-viewing condition 
showed less statistical learning than did those in the control 
condition. Second, if easier familiarization tasks resulted in 
increased statistical learning, there should have been a positive 
correlation between performance on the familiarization task 
and subsequent test performance within each condition; how-
ever, this relationship was not reliable in the control condition, 
r(16) = .18, p = .47, and was in the wrong direction in the 

summary condition, r(16) = –.32, p = .20. In sum, the findings 
from Experiment 1 provide evidence that statistical summary 
perception interferes with statistical learning.

Experiment 2
Is the interference between statistical summary perception and 
statistical learning unidirectional, or does statistical learning 
also interfere with statistical summary perception? We 
hypothesized that the relatively poor summary-task perfor-
mance in Experiment 1 might be attributable to the existence 
of statistical regularities in the line arrays. Even if they were 
not ultimately learned, these regularities might have engaged 
statistical learning, which in turn might have interfered with 
statistical summary perception. The goal of Experiment 2 
was to assess how the presence of line pairs in the arrays 
used in Experiment 1 influenced judgments of mean line 
orientation.

Participants
Twenty new undergraduates (9 male, 11 female; mean age = 
20.6 years) from Princeton University participated for course 
credit. All participants had normal or corrected-to-normal vision 
and provided informed consent. The experiment was approved 
by the institutional review board at Princeton University.

Stimuli, apparatus, and procedure
The line stimuli and apparatus were identical to those of 
Experiment 1. Participants were randomly assigned to one of 
two conditions: structured or random (n = 10 in each condi-
tion). The structured condition consisted of a familiarization 
phase and a test phase that were identical to those of the sum-
mary condition in Experiment 1. In the familiarization phase, 
three of the four line pairs (Fig. 2a) were selected for each 
array and overlaid pseudorandomly on an invisible 3 × 3 grid. 
Two participants in this condition were not able to complete 
the test phase because of technical issues, so we used their data 
from the familiarization phase only. The random condition 
also included a familiarization phase, which was the same as 
the familiarization phase in the structured condition except for 
one critical difference: After three pairs of lines were selected 
for each array and placed on the grid, the positions occupied 
by the lines were randomly shuffled (Fig. 2b). Shuffling the 
positions of the lines in each array eliminated spatial regulari-
ties in the arrangement of line orientations. There was no test 
phase in the random condition because no pairs were presented 
during the familiarization phase.

It is important to consider whether shuffling the locations 
of lines, in addition to eliminating spatial regularities, led to 
other differences in the line arrays that could have affected 
statistical summary perception. One possible difference could 
have been caused by the manner in which the grids were gen-
erated: On each trial, three of the four pairs were selected for 



1216  Zhao et al. 

the array; given that two of the four pairs had diagonal con-
figurations, at least one diagonal pair was selected. Because 
each array was composed of three pairs and had to include one 
diagonal pair, only lines from diagonal pairs could occupy the 
center cell. Specifically, if the diagonal pair was placed such 
that neither of its lines occupied the center cell, there was no 
way to place a line from a horizontal or vertical pair in the 
center cell without preventing the third pair from being placed 
on the grid. Because of this constraint, only the four orienta-
tions in the diagonally configured pairs could occupy the cen-
ter cell in the structured condition. However, because the 
positions of lines were shuffled, all eight of the orientations 
could appear in the center cell in the random condition.

The different spatial distribution of orientations across con-
ditions could not have influenced performance in the summary 
task for two reasons. First, because lines were shuffled only 
among occupied cells in the random condition, the center cell 
of the grid was equally likely to contain a line in the structured 
and random conditions. Second, because orientations were 
randomly assigned to pairs and the mean orientation varied 
randomly across trials, the orientation of the line in the center 
of the grid was not differentially informative about the mean 
orientation between the two conditions. Indeed, an analysis of 
our stimuli revealed that the center of the grid was equally 
likely to contain a line whose orientation matched the mean 
orientation in the structured (38.2%) and random (37.4%) con-
ditions, t(18) = 0.21, p = .83, d = 0.03.

Results and discussion
As in the summary condition of Experiment 1, participants in 
the structured condition did not express statistical learning in 
the test phase (mean accuracy = 43.8%, SD = 19.5%), t(7) = 
0.91, p = .39, d = 0.32.

As shown in Figure 2c, statistical summary perception was 
affected by the presence of regularities. In the structured con-
dition, mean accuracy in the summary task was 56.6% (SD = 
5.8%), which was reliably above chance (50%), t(9) = 3.63, 
p < .01, d = 1.15. In the random condition, mean accuracy in 
the summary task was 64.0% (SD = 7.2%), which was also 
above chance, t(9) = 6.12, p < .001, d = 1.94. Critically, perfor-
mance was reliably better in the random condition than in the 
structured condition, t(18) = 2.51, p < .03, d = 1.12. These 
results indicate that the mere presence of statistical regularities 
can impair statistical summary perception even if statistical 
learning is not successful, and thus suggest a possible disso-
ciation between the detection of regularities and their longer-
term retention.

Experiment 3
In Experiment 2, we found that statistical summary perception 
was hampered by the presence of regularities. We interpret this 
finding as evidence that statistical learning was engaged by the 
regularities and interfered with statistical summary perception. 
To seek converging support for the conclusion that statistical 
learning interferes with statistical summary perception, we 
manipulated the engagement of statistical learning in a different 
way in Experiment 3. The goal of this experiment was to assess 
whether learning the line pairs in advance would disengage sta-
tistical learning during the summary task and thus prevent regu-
larities from impairing statistical summary perception.

Participants
Thirty new undergraduates (13 male, 17 female; mean age = 
20.4 years) from Princeton University participated for course 
credit. All participants had normal or corrected-to-normal 
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Fig. 2. Design and results for Experiment 2. Eight black lines of various orientations were grouped into four pairs as in Experiment 1 (a). During the 
familiarization phase (b), arrays of three line pairs were overlaid on an invisible 3 × 3 grid; the pairs’ positions on the grid were selected pseudorandomly. 
In the structured condition, line pairs were overlaid on the grid in accordance with their assigned configurations (horizontal, vertical, or diagonal). In the 
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performed a summary task, in which they indicated whether the mean orientation of all lines in each display fell to the left or right of the vertical 
meridian. The graph (c) shows the mean percentage of correct responses on the summary task for each condition. Error bars represent ±1 SEM. 
The asterisks indicate significant differences from chance performance and significant differences between conditions (*p < .05; **p < .01; ***p < .001).
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vision and provided informed consent. The experiment was 
approved by the institutional review board at Princeton 
University.

Stimuli, apparatus, and procedure
The line stimuli and apparatus were identical to those used in 
Experiments 1 and 2. Participants were randomly assigned to 
one of two conditions: learned or novel (n = 15 in each condi-
tion). Both conditions consisted of three phases: preexposure, 
summary, and test (Fig. 3a). During the preexposure phase, 
participants in both conditions performed the control task 
from the familiarization phase in Experiment 1, indicating 
whether each line array contained a duplicate orientation. In 
the learned condition, the arrays contained line pairs (as in the 
structured condition of Experiment 2), whereas in the novel 
condition, the arrays contained no pairs (as in the random con-
dition of Experiment 2). On the basis of the results from the 
control task in Experiment 1, we expected to observe robust 
statistical learning for line pairs in the learned condition in 
Experiment 3.

The summary phase was identical in the learned and novel 
conditions, and was the same as the familiarization phase of 
the structured condition in Experiment 2: Participants esti-
mated the mean orientation of arrays containing line pairs. In 
the learned condition, the pairs in the summary phase were 
identical to those in the preexposure phase, whereas in the 
novel condition, the pairs were constructed from the lines that 
had been unpaired in the preexposure phase. In other words, 
the only difference between the learned and the novel  
conditions was that participants in the learned condition had 
the opportunity to learn the pairs during the preexposure 
phase, whereas participants in the novel condition could begin 

learning the pairs only during the summary phase. In the  
test phase, participants in both conditions completed a two-
alternative forced-choice test of statistical learning (as in 
Experiment 1).

Results and discussion
Participants in the learned condition expressed robust statisti-
cal learning in the test phase (mean accuracy = 67.5%, SD = 
12.9%), t(14) = 5.22, p < .001, d = 1.35. Participants in the 
novel condition did not show statistical learning (mean accu-
racy = 50.8%, SD = 18.7%), t(14) = 0.17, p = .87, d = 0.04. 
These results are fully consistent with those of Experiment 1: 
Reliable statistical learning occurred when regularities were 
present during the control task (learned condition), but not 
when they were present only during the summary task (novel 
condition).

As shown in Figure 3b, statistical summary perception was 
affected by whether participants had been able to learn regulari-
ties in advance. In the learned condition, mean accuracy in the 
summary task was 65.9% (SD = 7.9%), which was reliably 
above chance, t(14) = 8.34, p < .001, d = 2.15. In the novel con-
dition, mean accuracy in the summary task was 58.6% (SD = 
8.0%), which was also above chance, t(14) = 4.15, p < .01, d = 
1.07. Critically, performance was reliably better in the learned 
condition than in the novel condition, t(28) = 2.60, p < .02,  
d = 0.95.

This result replicates and extends the findings from Experi-
ment 2, in which summary-task performance was impaired by 
the possibility of statistical learning. In that experiment, the 
manipulation of statistical learning relied on differences in the 
arrays over which participants made summary judgments (i.e., 
arrays in the structured condition contained pairs, but arrays in 
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the random condition did not). In Experiment 3, we observed 
a similar decrement in summary-task performance when learn-
ing was possible, despite the fact that the stimuli in the sum-
mary phase were identical in the learned and novel conditions. 
Regularities, which appeared in both conditions, impaired sta-
tistical summary perception only in the novel condition—that 
is, when they had not been learned in advance and thus engaged 
statistical learning for the first time.

General Discussion
The goal of this study was to examine the relationship 
between two kinds of statistical processing that have previ-
ously been studied in isolation. Statistical summary percep-
tion and statistical learning appear to be separate kinds of 
processing, operating over different time scales and resulting 
in different kinds of knowledge. However, both processes 
require aggregating and distilling sensory evidence, and they 
may therefore interact. Indeed, we found mutual interference 
between statistical summary perception and statistical learn-
ing: Computing the mean orientation of lines impeded statis-
tical learning of line pairs in Experiment 1, and learning 
about line pairs impeded statistical summary perception in 
Experiments 2 and 3.

One potential explanation for this bidirectional interference 
is that statistical summary perception and statistical learning 
depend on shared statistical computations. Specifically, com-
puting the mean value in a feature dimension might rely on  
the same process as updating a probability matrix about  
object co-occurrences. Thus, statistical summary perception 
may directly interfere with the calculation of probabilities, and 
statistical learning may directly interfere with the calculation 
of summary statistics.

Alternatively, statistical summary perception and statistical 
learning might change the currency of the visual system, pri-
oritizing summary-level representations and individual-level 
representations, respectively. Thus, summary representations 
may serve as the primary input to statistical learning during 
statistical summary perception, weakening learning about spe-
cific relationships among individual objects.2 In turn, statisti-
cal learning may be implicitly engaged by these relationships, 
limiting the set of individual objects over which summary sta-
tistics can be computed.

These changes in how visual information is represented 
could be mediated by requirements for different spatial scales 
of attention. Statistical summary perception is more accurate 
when attention is distributed globally, whereas the identifica-
tion of individual objects is more accurate when attention is 
directed locally (Chong & Treisman, 2005). Because regulari-
ties in our study were defined over individual objects, a global 
scale of attention during the summary task of Experiment 1 
could have blocked statistical learning. According to this 
explanation, impaired summary task performance in Experi-
ments 2 and 3 might have resulted from a detrimental shift to 
a more local scale of attention. Future research is needed to 

evaluate the intriguing possibility that the presence of task-
irrelevant regularities can attract local attention.

The known consequences of statistical learning for other 
cognitive processes are largely beneficial; such consequences 
include facilitated object-label learning (Graf Estes, Evans, 
Alibali, & Saffran, 2007), speeded object categorization 
(Turk-Browne et al., 2010), and increased visual short-term 
memory capacity (Brady et al., 2009). In contrast, the current 
findings reveal a novel cost of statistical learning for statistical 
summary perception. Uncovering the nuanced ways in which 
statistical learning interacts with other aspects of cognition 
may help to elucidate how statistical learning works.
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Notes
1. Each target pair was presented twice as often as each foil pair 
during the test phase; this procedure raised the possibility that learn-
ing of the target pairs would occur during the test. However, because 
the test phase was identical in all conditions, learning during the test 
cannot explain the differences in performance between conditions. 
Moreover, results did not indicate that learning occurred during the 
test phase: Performance did not improve between the first and sec-
ond halves of the test phase (56.3% vs. 57.2%), t(53) = 0.31, p = .76, 
d = 0.05.
2. According to this currency hypothesis, statistical learning may 
occur when summary statistics themselves contain regularities, such 
as when the temporal sequence of mean orientations is structured.
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