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a b s t r a c t 

Adult cognitive neuroscience has guided the study of human brain development by identifying regions associated 

with cognitive functions at maturity. The activity, connectivity, and structure of a region can be compared across 

ages to characterize the developmental trajectory of the corresponding function. However, developmental differ- 

ences may reflect both the maturation of the function and also its organization across the brain. That is, a function 

may be present in children but supported by different brain regions, leading its maturity to be underestimated. 

Here we test the presence, maturity, and localization of adult functions in children using shared response model- 

ing, a machine learning approach for functional alignment. After learning a lower-dimensional feature space from 

fMRI activity as adults watched a movie, we translated these shared features into the anatomical brain space of 

children 3–12 years old. To evaluate functional maturity, we correlated this reconstructed activity with children’s 

actual fMRI activity as they watched the same movie. We found reliable correlations throughout cortex, even in 

the youngest children. The strength of the correlation in the precuneus, inferior frontal gyrus, and lateral occip- 

ital cortex predicted chronological age. These age-related changes were driven by three types of developmental 

trajectories: emergence from absence to presence, consistency in anatomical expression, and reorganization from 

one anatomical region to another. We also found evidence that the processing of pain-related events in the movie 

underwent reorganization across childhood. This data-driven, naturalistic approach provides a new perspective 

on the development of functional neuroanatomy throughout childhood. 
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. Introduction 

The advent of non-invasive neuroimaging techniques opened a new

indow into the study of human cognitive development. Initial fMRI

tudies of children examined functional differences in anatomical brain

egions associated with particular cognitive functions in adults, such as

he prefrontal cortex for executive function ( Luna et al., 2001 ) and the

mygdala for fear processing ( Thomas et al., 2001 ). This approach was

ffective in characterizing the development of these brain regions. It also

rovided evidence in support of a maturational account of development

 Johnson, 2011 ), which states that as cognitive functions come online

uring development, they will occupy the same neural regions as adults.

However, other research has shown that cognitive functions can be

ubserved by different brain regions at different ages ( Bayet and Nelson,

019; Brown et al., 2005; Durston et al., 2006; Jolles et al., 2011; Nel-

on et al., 2003; Schlaggar, 2002; Thomason et al., 2008 ). One striking

xample is the development of visual object recognition: face process-

ng is initially supported by both left and right fusiform gyrus, but as

hildren learn to read, a region selective for visual words emerges in

he left fusiform gyrus and face processing begins to shift to being right
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ateralized ( Centanni et al., 2018; Dehaene-Lambertz et al., 2018; Dun-

as et al., 2013 ). Thus, as children gain new cognitive skills, such as

eading, the localization of orthographic (and face) processing changes.

There are multiple interpretations for dynamic patterns of cognitive

evelopment in the brain ( Brown et al., 2006; Poldrack, 2010 ). For ex-

mple, studies sometimes show a shift from distributed to focal pro-

essing over development ( Durston et al., 2006 ); that is, functions are

ocalized to many regions early on, but localized to one or a smaller

umber of regions later. Such a finding could be evidence of increased

fficiency of brain regions, decreased reliance on other regions for “sup-

ort, ” changes in the computations being performed, or simply artifacts

f greater variability in region localization in developing populations. 

Changes in the number and relationship between brain regions sup-

orting a cognitive function can also be considered in the context of

he interactive specialization framework ( Johnson, 2001; 2011 ). This

heory emphasizes that brain regions do not mature in isolation, but

pecialize over experience through interactions with each other. For ex-

mple, if a newly emerging skill or function would be well-supported by

 brain region (e.g., because of its cells, circuitry, or connectivity) that

urrently supports a different function, and if there is another brain re-

ion that already supports or could support the current function, there
vember 2020 
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ay be changes in tuning and connectivity between these regions to

ccommodate the new function while retaining the current function in

onjunction with other regions. 

The current study builds on prior work exploring dynamic changes

n functional brain development in two ways. Hypothesis-driven ap-

roaches can find evidence for the maturational account, but have a

arder time supporting alternatives. An analysis that can discover the

eorganization of a function on the cortex would be valuable in dis-

overing how the brain matures functionally. We therefore establish an

nbiased, data-driven approach that can capture different kinds of de-

elopmental change under a common framework, by searching for pat-

erns of functional activity rather than focusing on specific regions. We

o not assume the timing or types of cognitive functions that are re-

ruited (though consider this in a secondary analysis), but instead rely

n the idea that the time course of brain activity reflects the compu-

ations being performed. This means that similar time courses of brain

ctivity can be attributed to similar cognitive processes. Second, most

rain-based studies of cognitive development pursue a standard lab ap-

roach of isolating cognitive functions. Although vital for manipulating

nd tracking exactly what is changing, an alternative, naturalistic ap-

roach could provide a more comprehensive and ecological sense of

ow the brain is developing. Indeed, in adult cognitive neuroscience,

aturalistic paradigms such as movie-watching have yielded unexpected

nsights into how the brain processes information across time-scales and

omains ( Sonkusare et al., 2019 ). Movie-watching has also emerged as

n invaluable tool in children (see Vanderwal et al., 2019 ), with pre-

ious studies tending to focus on one or a small number of key cogni-

ive functions ( Cantlon and Li, 2013; Richardson et al., 2018 ). Here we

perationalize function more holistically, as a collection of data-driven

eatures derived from adult brain activity. In this way, movie-watching

an be used to efficiently sample a broad swath of cognition. 

To track the neural development of cognitive functions within and

cross brain regions, we applied functional alignment ( Chen et al., 2015 )

o an open-access dataset ( “Partly Cloudy ”) of children aged 3–12 and

dults watching a movie during fMRI ( Richardson et al., 2018 ). We used

pen-source software for shared response modeling (SRM; Kumar et al.,

020 ) to extract temporal features of brain activity that were shared

cross the adults. For meaningful features to be extracted, this method

equires that brain activity is time-locked across participants, as occurs

hen they watch the same movie ( Hasson et al., 2004 ). Therefore, SRM

s currently not well-suited for resting-state fMRI, for which there is no

xpectation that spontaneous activity will be aligned in time. There are

arger movie datasets from children than Partly Cloudy ( Alexander et al.,

017 ), which present additional opportunities for future research. How-

ver, to our knowledge, the Partly Cloudy dataset is unique in having

oth children across a range of ages and an adult comparison group who

atched the same movie. This is crucial for the present goal of learning

eatures of adult function and assessing their expression in children as

 way of quantifying development. 

In prior work, SRM has been used to distinguish scenes during movie-

atching ( Chen et al., 2015; Turek et al., 2018 ), relate perception and

ecall ( Chen et al., 2017 ), and map semantic features to fMRI activity

 Vodrahalli et al., 2018 ). Here, we take a new approach of using SRM

o understand how content in the adult brain is represented in the de-

eloping brain. Although a variant of SRM has been used for age pre-

iction amongst adults ranging in age from 18 to 88 ( Richard et al.,

019 ), our study is unique in learning a shared response from one age

roup (adults) and applying it to a completely independent age group

children). By studying a large sample across childhood, this approach

an be used to characterize the developmental trajectory of adult brain

unction. The features that SRM learns can be thought of as capturing ab-

tract cognitive functions that vary distinctively from each other across

he movie in a way that is consistent in adults. We then mapped the chil-

ren into this lower-dimensional feature space. These mappings were

sed in reverse to port adult fMRI activity into each child’s anatomical

rain space. Comparing this reconstructed activity to the child’s actual
2 
MRI activity allowed us to quantify the expression of adult functions

hroughout childhood. Higher correlation between reconstructed and

ctual activity means that the child’s brain expressed the abstract func-

ions shared in adults, what we refer to as “adult-like ”. Although these

bstract functions cannot be cleanly identified with specific psychologi-

al constructs, a key advantage of this data-driven approach is that they

an be aligned across adults and children without making any anatomi-

al assumptions. There is no requirement that functions are instantiated

n the same brain regions across individuals, whether within or between

ges. In fact, our approach would be equally sensitive to the develop-

ent of functions that emerge within one region as to functions that

eorganize from one region to another. 

. Materials and methods 

.1. Data 

The Partly Cloudy dataset was obtained from the OpenNeuro

atabase (accession number ds000228). A full description of data ac-

uisition can be found in the original paper ( Richardson et al., 2018 ).

articipants with neuroimaging data available consisted of 33 adults

18–39 years old; M = 24.8, SD = 5.3; 20 female) and 122 children

3.5–12 years old; M = 6.7, SD = 2.3; 64 female; for more details, see

able S1). Informed consent was obtained from adult participants and

rom parents/guardians on behalf of child participants, who provided

heir own assent. The study was approved by the Committee on the Use

f Humans as Experimental Subjects (COUHES) at the Massachusetts

nstitute of Technology. 

.2. fMRI acquisition and preprocessing 

Participants watched an animated movie ( Sohn and Reher, 2009 )

hat lasted approximately 5 minutes while undergoing fMRI. No explicit

ask was given beyond staying still and paying attention to the movie.

dults and older children used the standard Siemens 32-channel head

oil. For younger children, one of two custom 32-channel phased-array

ead coils was used (smallest coil: N = 3, M = 3.91, SD = 0.42 years old;

maller coil: N = 28, M = 4.07, SD = 0.42 years old). The only differ-

nce between head coils was their size. These size-optimized head coils

ave been shown to increase signal-to-noise in participants with smaller

eads ( Keil et al., 2011 ). fMRI data were collected using a gradient-echo

PI sequence (TR = 2 s, TE = 30 ms, flip angle = 90 ◦, matrix = 64 ×64,

lices = 32, interleaved slice acquisition) covering the whole brain. To

orrect for slight variations in the voxel size and slice gap parameters

cross participants, data were resampled to 3 mm isotropic with 10%

lice gap (the modal parameters). Children also participated in a num-

er of behavioral tasks not related to the movie that are beyond the

cope of the current study. 

Preprocessing of the structural and functional MRI data was per-

ormed with fMRIPrep (v1.1.8; Esteban et al., 2019 ). First, T1-weighted

tructural images from an MPRAGE sequence (GRAPPA = 3, slices =
76, resolution = 1 mm isotropic, adult coil FOV = 256 mm, child

oils FOV = 192 mm) were corrected for intensity non-uniformity using

4BiasFieldCorrection (v2.1.0) and skull-stripped using antsBrainEx-

raction.sh (v2.1.0, OASIS template). Cerebrospinal fluid (CSF), white-

atter (WM) and gray-matter (GM) masks were extracted from the

tructural image using FAST (FSL v5.0.9). Surface reconstruction was

erformed by FreeSurfer (v6.0.1). Nonlinear registration to an MNI

emplate for spatial normalization was performed with the antsRegis-

ration tool (ANTs v2.1.0). Registrations were visually inspected and

he quality of fit did not seem to differ across child and adult partici-

ants. Functional images were slice-time corrected using 3dTshift from

FNI (v16.2.07), then motion corrected using FSL’s mcflirt (v5.0.9). Co-

egistration to the structural scan was performed with 9 degrees of free-

om using bbregister in FreeSurfer (v6.0.1). Transformations were con-
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Fig. 1. Schematic of the signal reconstruction pipeline. An SRM was trained on the first half of the fMRI data from a group of adults ( N = 33; 2 example matrices 

shown) and then each of the children ( N = 122) was fit into this space. Adult fMRI data from the second half of the movie (i.e., not used to train the model) were 

transformed into the shared space and averaged. This shared adult activity was then projected into each child’s brain and correlated with their actual activity. This 

procedure was then repeated for training on the second half and testing on the first half. 
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atenated using antsApplyTransform (v2.1.0). Frame-wise displacement

as estimated using Nipype. 

.3. Experimental design 

We used SRM ( Chen et al., 2015; Turek et al., 2018 ) to identify ac-

ivity in the developing brain that could be predicted from adult brain

ctivity (illustrated in Fig. 1 ). This method assumes that all participants

ere shown the same stimulus with the same number of time-points

ut does not require that they have the same number of voxels. First,

he time-points from a group of adults were evenly split into training

nd test sets for cross-validation purposes. We used one half of the adult

ata to learn the shared feature space, consisting of features that cap-

ured shared temporal variance across adults, as well as the mappings

etween individual adults’ brain activity and this shared space. No child

ata were used for training the model. Prior to any other analyses, we

an this analysis on subsets of the adult data varying the number of fea-

ures (5–80, in increments of 5) and found that 10 features learned from

 set of adults gave the highest whole-brain signal reconstruction values

or held-out adults ( M = 0.087, SD = 0.031; Fig. S1). Although this was

he global maximum, other numbers of features yielded comparable sig-

al reconstruction. Selecting one of these local maxima would change

he dimensionality of the shared response, which could affect the results.

his would be unwieldy to examine in the current paper, but could be
3 
xplored more thoroughly in future work, including by sampling differ-

nt numbers of features with more granularity in steps of 1 rather than

 features. 

After learning 10 shared features in adults using one half of the adult

ata, we found the mapping (voxels by features) between an individual

hild’s functional activity (voxels by time) and the shared response (time

y features) for this same portion of the movie. Singular value decom-

osition was implemented to solve for the orthogonal weight matrix.

alues in each cell of this resulting weight matrix denote how strongly

 given voxel in the child expresses each of the 10 features discovered

rom the adult data. Next, we used the remaining half of the adult data

o quantify how the 10 shared features were expressed in data not in-

olved in SRM training. Each adult’s transposed weight matrix (features

y voxels) was used to transform their raw voxel activity (voxels by

ime) into the shared feature space (features by time). We then averaged

hese shared responses across all adults to find the canonical adult re-

ponse in terms of shared features during this part of the movie. Finally,

ach child’s weight matrix (voxels by features) was used to transform

he average adult shared response (features by time) into the child’s

rain space (voxels by time). This predicted response represents what

he child’s brain activity would look like if they expressed the same

hared features of adults. We quantified the extent to which this was

rue by correlating the child’s actual raw response with this predicted

esponse for each voxel separately. Thus, higher signal reconstruction
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eflected greater adult-child functional similarity —i.e., more adult-like

unctions in the child’s brain —agnostic to the anatomical localization of

hese functions in either group. The voxelwise map of predicted-actual

orrelations for each child was averaged across individuals within age

roups. We ran this entire procedure twice, training the SRM on the

rst half of the movie and testing on the second half in one fold, and

hen vice versa in another fold, and present results averaged across these

olds. Rather than using Pearson correlation as a standardized measure

f similarity, we could have estimated this association with a general

inear model (GLM) for each voxel, in which the predicted activity from

dults is entered as the explanatory variable and the actual child activ-

ty is treated as the response variable. The resulting beta values could

e used to test reliability across participants, which yields nearly identi-

al statistical significance as correlation coefficients (Fig. S2), but with

he added benefit of reflecting the real magnitude of the relationship

etween these variables. The GLM approach also makes it possible to

ontrol for nuisance variables, such as head motion. 

Our first objective was to assess the degree to which children’s brain

ctivity could be reconstructed from shared features learned in adults.

e quantified the noise ceiling for this group-level signal reconstruc-

ion by leaving one adult participant out of SRM training, correlating

hat individual’s predicted and actual brain activity, and then iterating

hrough each adult. This was treated as the noise ceiling because the

eld-out participant was from the same age group used to train the SRM.

ur second objective was to quantify how signal reconstruction may

hange over development, and whether this could be a useful measure

or predicting an entirely held-out child’s age. We then explored how

he individual features that comprise the shared response may exhibit

ifferent developmental trajectories throughout childhood. Finally, we

nvestigated the relationship between individual features and cognitive

onstructs. Partly Cloudy was first used as a localizer for theory of mind

n adults ( Jacoby et al., 2016 ). As such, different events in the movie

elevant to social cognition were annotated, including social, pain, and

entalizing events. For each event type, we generated a time series of

vents and convolved it with a double-gamma hemodynamic response

unction (HRF). Because we used data from the second half of the movie

or predicting children’s brain activity from adult features, we restricted

ur analyses of social cognitive events in that half. Two of the three

vent types, pain and mentalizing events, were present in the second

alf of the movie and could therefore be compared to the average ex-

ression of shared features in adults. 

.4. Statistical analysis 

We used bootstrap resampling methods to statistically evaluate our

esults non-parametrically ( Efron and Tibshirani, 1986; Fan et al., 2020;

im et al., 2014 ). For each effect of interest, at the last step of the

nalysis we randomly sampled participants with replacement to form

 new sample of the same size as the original group, averaged the effect

cross the sample, and repeated for 10,000 iterations. The logic of this

pproach is that if an effect is reliable across participants, the partici-

ants should be interchangeable, and a similar group effect should be

bserved in each iteration. The resampled values across all iterations

eflect a sampling distribution of the effect of interest, further provid-

ng confidence intervals on the original effect. Null hypothesis testing

an be performed by determining the proportion of resampled values

hat were of the opposite sign as the original effect. The original effect

an also be normalized into a z -statistic by dividing the mean of the

esampled distribution by its standard deviation. For voxelwise analy-

es, this was performed in each voxel to create a statistical map. This

ap was corrected for multiple comparisons using a cluster-based cor-

ection in FSL’s cluster tool (cluster-forming threshold, p < 0.001). Cor-

ected p -values were found using Gaussian Random Field Theory and

he smoothness estimated from the original map. 

We quantified the relationship between signal reconstruction and

ge by first fitting a linear regression model for each voxel. We then
4 
sed the same bootstrapping approach described above, now resampling

articipants to calculate the relationship between signal reconstruction

nd age in each iteration, resulting in a sampling distribution for the

elationship. We calculated the p -value as the proportion of iterations

n which the correlation coefficient from the linear regression model

ent in the opposite direction from the original model. We compared

his model against other types of models that have been used previously

n developmental cognitive neuroscience ( Schlichting et al., 2017 ). For

ach voxel, we fit five regression models: (1) a linear model with age

lone as the predictor (as above), (2) a linear model with age and sex

s predictors, (3) a linear model with age and sex as predictors plus

n age-by-sex interaction term, (4) a quadratic model with just age as

 predictor, and (5) a quadratic model with age and sex as predictors

lus an age-by-sex interaction term. We then assessed which model gave

he lowest Akaike information criterion (AIC), a measure of the relative

uality of different models, for each voxel. 

We used leave-one-out cross-validation to predict the age of children

rom signal reconstruction. For each iteration, we fit the linear regres-

ion model between signal reconstruction and age in a training set of

 -1 participants. We did this separately for each voxel and retained the

lusters that were significant within the training set (based on the previ-

usly described bootstrap resampling method). Note that we ignored the

ign of the significant relationship in a cluster and thus it was possible

o find negative beta values. We then fit a regularized ridge regression

penalty = 1) across voxels from the significant clusters. To predict age

n the held-out 𝑁 th test participant, we input their signal reconstruc-

ion scores across these voxels and output an estimated age. Finally, we

alculated the Pearson correlation and mean-squared error between the

hronological and predicted ages of children across iterations. 

In addition to reconstructing all 10 adult features in children, we

lso performed signal reconstruction for individual adult features. To

est single-feature reconstruction within the adults, we could not per-

orm the fully cross-validated approach described above of leaving one

dult participant entirely out of both the training set used to learn the

RM and the testing set used to generate predicted activity. This is be-

ause each training set would have contained a unique set of adults,

hich could lead to different features and/or a different ordering of

eatures in the shared space. We would therefore not be confident that

e were considering the same feature across folds. Instead, we included

ll adults when training the SRM on one half of the movie, so that there

ould be a consistent shared space across adults and as used to recon-

truct children. Nevertheless, we left one adult out when averaging the

dult shared response for the other half of the movie, using the expres-

ion of the selected feature in all but that adult to predict their neural

ctivity. Because the reconstructed adult was used in SRM training, we

ncluded a 10 time-point buffer between their training and test data

o minimize non-independence. Signal reconstruction of individual fea-

ures in children was identical to the main analysis, except based on

eparate weight matrices for each child mapping from their voxel space

o a given adult feature. That is, although the adult data could not be

ully cross-validated, the data from children remained completely un-

ouched during SRM training. 

In the single-feature analysis, we sought to quantify how brain re-

ions changed in their expression of features over development. We

hus defined regions of interest (ROIs) using the Schaefer brain atlas

 Schaefer et al., 2018 ). This atlas consists of 100 parcels discovered from

esting-state connectivity data in adults and matched to 17 functional

etworks ( Yeo et al., 2011 ). We reconstructed each of the ten features

n adults and children and then calculated the average signal recon-

truction scores across voxels in each of the 100 parcels. For statistical

nalysis, we used the same bootstrap resampling procedure across the

articipants in a given age group, separately for each parcel and feature.

o correct for multiple comparisons across the parcels, we used Bonfer-

oni correction (100,000 bootstrap iterations were run to gain precision

n p -values for thresholding). Finally, the parcels that survived correc-

ion were ranked according to the strength of signal reconstruction. 
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Fig. 2. Reconstruction of adult function in 

children. In all brain plots, the strength of sig- 

nal reconstruction is denoted by color and only 

regions that survived statistical thresholding 

through cluster correction are plotted. (A) Sig- 

nal reconstruction for a group of adults predict- 

ing an independent adult’s functional activity 

is reliable throughout much of the brain. (B) 

Signal reconstruction remains statistically re- 

liable (though numerically weaker) for adults 

predicting functional activity in children rang- 

ing from 3–12 years old. 
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Table 1 

Different models used to predict signal reconstruction (SigRecon), 

which is the correlation between predicted and actual activity in a held- 

out child. For each voxel, the model with the lowest AIC was assigned 

to that voxel. The average and standard deviation of AIC values for a 

given model for voxels where that model was the best is shown in the 

right column. Overall, the linear model used in our main analyses with 

age as the only predictor best described the data. 

Regression model Number of voxels AIC M ( SD ) 

𝑆𝑖𝑔𝑅𝑒𝑐𝑜𝑛 ∼ 𝐴𝑔𝑒 39,111 2.41 (0.56) 

𝑆𝑖𝑔𝑅𝑒𝑐𝑜𝑛 ∼ 𝐴𝑔𝑒 + 𝑆𝑒𝑥 60 5.21 (1.39) 

𝑆𝑖𝑔𝑅𝑒𝑐𝑜𝑛 ∼ 𝐴𝑔𝑒 + 𝑆𝑒𝑥 + 𝐴𝑔𝑒 ∗ 𝑆𝑒𝑥 31 4.76 (1.91) 

𝑆𝑖𝑔𝑅𝑒𝑐𝑜𝑛 ∼ 𝐴𝑔𝑒 2 49 3.75 (2.01) 

𝑆𝑖𝑔𝑅𝑒𝑐𝑜𝑛 ∼ 𝐴𝑔𝑒 2 + 𝑆𝑒𝑥 2 + 𝐴𝑔𝑒 ∗ 𝑆𝑒𝑥 31 3.71 (1.05) 
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We used bootstrap resampling to quantify the relationship between

ndividual features and psychological constructs. For each feature, we

andomly sampled with replacement the expression of the feature in 33

dults (i.e., second half data transformed into their feature space), and

hen averaged the results into a single adult shared response for the

eature. We then correlated the average adult shared response for each

eature with the convolved event time series for each event type and

epeated the procedure 10,000 times. We calculated the p -value as the

roportion of resamples in which the correlation had the opposite sign

rom the original correlation, doubled to convert to two-tailed. Because

his was not a planned analysis, we corrected for 10 multiple compar-

sons (corresponding to the 10 features) with a Bonferroni correction. 

.5. Code accessibility 

The analysis code for running the signal reconstruction analy-

is pipeline is available on Github: https://github.com/tristansyates/

artly-recon . 

. Results 

.1. Adult-like brain function in early to middle childhood 

We first characterized how well adult brain activity could be re-

onstructed from other adults. Signal reconstruction was widespread

hroughout the brain, especially in occipital and parietal cortices

 Fig. 2 A). This indicates that the shared features learned by SRM from

ne half of the movie accounted for adult brain activity during the other

alf of the movie. Importantly, this only works because of the ability of

RM to learn abstract features that generalize across the contents of the

wo halves. Although we found tentative evidence for higher whole-

rain signal reconstruction in younger adults (Fig. S3), scores were re-

iably positive across the adult sample. 

Remarkably, signal reconstruction was also widespread in the chil-

ren despite the fact that the functional features were defined entirely in

dults ( Fig. 2 B). Results were nearly identical when including nuisance

arameters in a GLM relating children’s actual and predicted brain ac-

ivity (Fig. S2) and were similar, but slightly stronger after accounting

or nuisance parameters prior to constructing the shared response (Fig.

4). In the child brain, adult functions were most strongly represented

n lateral occipital and posterior medial regions, albeit weaker than in

he adult brain. 

.2. Relationship between age and signal reconstruction 

The previous analysis collapsed across all children, but the degree

nd location of signal reconstruction may vary with age. We quantified

hese relationships by correlating, for each voxel in the brain, children’s

ignal reconstruction values (i.e., the extent to which adult brain activ-

ty predicts that child’s brain activity) with their chronological age. Af-
5 
er correcting for multiple comparisons, signal reconstruction was pos-

tively correlated with children’s age in regions including the bilateral

recuneus, bilateral lateral occipital cortex, postcentral gyrus, and in-

erior frontal gyrus ( Fig. 3 A; see also Fig. S3). Thus, in these regions,

dult brain activity better predicts older children’s brain activity com-

ared to younger children. No regions showed a reliable negative corre-

ation. Alternative models taking into account children’s sex and testing

or quadratic relationships did not generally provide better fits than this

inear model ( Table 1 ). The basic linear model with age alone gave the

owest AIC values for the majority of voxels, and therefore minimized

he information loss when trading off with model complexity. Further-

ore, individual voxels in which other models had the lowest AIC val-

es were scattered across the brain, suggesting that they were capturing

oise and providing further evidence that the basic linear model per-

ormed best. 

.3. Out-of-sample prediction of a child’s age from signal reconstruction 

With chronological age related to signal reconstruction in several

egions of the brain, it may also be possible to predict the age of a

reviously unseen child. In a nested cross-validation analysis, we first

rained a linear regression model between signal reconstruction and age

or each voxel in all but one child. Blind to this child, we determined

hich voxels showed a significant relationship with age again through

ootstrapping and cluster correction. We then trained a ridge regression

odel on these significant voxels. This model was used to predict the

eld-out child’s chronological age from their multivariate pattern of sig-

al reconstruction scores across the voxels. This procedure was repeated

22 times to use each child as the held-out test data once. Note that the

ignificant clusters varied slightly across iterations because the training

et changed when different children were used as test data. Finally, we

orrelated the predicted and actual ages ( Fig. 3 B), and found a strong re-

ationship ( r = 0.436, p < 0.001). Indeed, our model had a mean-squared

rror of 6.05, meaning that our average error in age prediction was 2.46

ears across an age range of 8.78 years. 

https://github.com/tristansyates/partly-recon
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Fig. 3. Relationship between signal recon- 

struction and age. (A) Brain regions with a reli- 

able correlation between signal reconstruction 

of adult function in a child’s brain activity and 

the child’s chronological age across all 122 chil- 

dren, colored by the strength of the relation- 

ship. (B) Similar regions are found in leave- 

one-child-out iterations of the age prediction 

analysis. Yellow–red colors signify regions that 

were significant in a majority of iterations. Us- 

ing signal reconstruction scores from these re- 

gions, we could accurately predict the held-out 

child’s chronological age. 

Fig. 4. Signal reconstruction of adult features was statistically reliable even in the youngest children, but spread anatomically and grew in strength throughout 

childhood. To quantify this developmental change, we correlated the unthresholded voxelwise signal reconstruction in each age group with that of adults, revealing 

increasing maturity: 3.5–4.5 years, r = 0.507; 4.5–5.5 years, r = 0.587; 5.5–7.5 years, r = 0.601; 7.5–9.5 years, r = 0.646; 9.5–12.3, r = 0.797. 
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.4. Reliable signal reconstruction in all age groups 

The relationship between signal reconstruction and age could reflect

 lack of adult function in early childhood that emerges in middle child-

ood. To evaluate this possibility, we divided children into five age bins

3.5–4.5, 4.5–5.5, 5.5–7.5, 7.5–9.5, 9.5–12.3 years old), each containing

oughly the same number of participants ( N = 20–26). This was done

or analytical convenience and was not intended to suggest discrete de-

elopmental stages. Although signal reconstruction increased with age,

e nevertheless found reliable signal reconstruction in every age group.

his includes lateral occipital, posterior medial, and supramarginal re-

ions, even in the youngest children aged 3–5 ( Fig. 4 ). Signal recon-

truction emerged in frontal regions around age 5, and became more

ronounced in the older groups. To obtain a global measure of adult-

hild similarity, we correlated the unthresholded maps of signal recon-

truction for each age group with that of adults. There was reasonable

greement in all groups, though the amount of variance explained grew

rom 25% in the youngest children to 64% in the oldest children. 

.5. Controlling for age-related noise in signal reconstruction 

Increases in signal reconstruction over development may result from

ounger children being “noisier ” than older children and adults, includ-

ng because of differences in task compliance, preprocessing quality,

nd/or BOLD physiology ( Harris et al., 2011; Phan et al., 2018 ). Chil-

ren did move their heads more than adults overall, but this did not

rack with age across children (analysis of number of time-points ex-

eeding 2 mm motion threshold from Richardson et al. (2018) : one-way
6 
NOVA across age groups, F (4,116) = 1.175, p = 0.325; correlation with

ge across children, r = − 0.112, p = 0.221). 

Moreover, we can estimate and control for noise in different age

ands using the noise-ceiling approach from adults ( Fig. 2 A). For each

ge group, we held one child out and used SRM to learn shared features

n the remaining children of that group. We then predicted the held-out

hild’s voxel activity, correlated it with their actual activity, and aver-

ged across significant clusters to derive a global within-group signal

econstruction score for each child. The average score across children

n a group provides a measure of the reliability of functional brain ac-

ivity in that group. This within-group signal reconstruction correlated

ith chronological age ( r = 0.359, p < 0.001), consistent with decreasing

oise over development. Within-group signal reconstruction was also

orrelated with adult-group signal reconstruction ( r = 0.647, p < 0.001).

ritically, however, the correlation between adult-group signal recon-

truction and chronological age ( r = 0.418, p < 0.001) persisted after

ontrolling for within-group signal reconstruction ( r = 0.261, p = 0.003).

n contrast, the correlation between within-group signal reconstruction

nd chronological age did not hold after accounting for adult-group sig-

al reconstruction ( r = 0.128, p = 0.158). These results suggest that

dult features capture more about child brain function than changes in

oise over development. 

.6. Emergence and reorganization of adult function over child 

evelopment 

There are at least two other potential explanations for the age-related

ncreases in signal reconstruction we observed. First, a subset of the
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dult functions being reconstructed may be absent from younger chil-

ren and mature over development to become present in older children

emergence). Second, adult functions may be present in both younger

nd older children but expressed in different brain regions over devel-

pment (reorganization). By both accounts, the brain regions expressing

 function in older children would not express it as strongly in younger

hildren. The accounts differ, however, in that reorganization but not

mergence predicts that the function would be expressed in other brain

egions in younger children. 

Emergence and reorganization are difficult to distinguish with the

nalysis approach used so far. By predicting the activity of each voxel

s a weighted combination of all adult features, we may have obscured

evelopmental trajectories that differed across features. We thus mod-

fied our pipeline to predict activity in children from individual adult

eatures, each of which captures a narrower, more unique range of adult

unction. The modification occurred in step 4 ( Fig. 1 ), where we now

ransformed only one average adult feature at a time into the voxel space

f a child. Individual features do not necessarily isolate single functions,

nd emergence and reorganization are not mutually exclusive, so it may

e possible to observe both patterns within a feature. We used a func-

ional atlas ( Schaefer et al., 2018 ) to identify regions that showed the

trongest signal reconstruction for a given feature per age group. 

We found evidence of both emergence and reorganization across dif-

erent adult features, as well as a third pattern in which a feature was

xpressed in the same brain region(s) across development (consistency).

epresentative features illustrating these three types of trajectories are

epicted in Fig. 5 (for all features, see Figs. S5 and S6). For example,

eature 4 was not reliably expressed in the two youngest age groups and

merged in the lingual gyrus of older children and adults ( Fig. 5 A). In

ontrast, Feature 6 was expressed most strongly in the posterior cingu-

ate and lingual gyrus consistently throughout development ( Fig. 5 B).

inally, Feature 7 was expressed most strongly in the precuneus and

osterior cingulate of children and migrated to be more strongly rep-

esented in parietal regions in adults ( Fig. 5 C). This feature also inter-

stingly shows some consistency over development. Nonetheless, it was

ne of several features where the average signal reconstruction value

cross the whole brain was significantly related to child age (Fig. S3).

hus, by measuring functional profiles regardless of anatomy, signal re-

onstruction revealed developmental changes both within and across

rain regions. 

.7. Cognitive interpretation of shared features 

The features that we learned from adult fMRI activity are abstrac-

ions, making it difficult to assign them to specific cognitive functions.

oreover, our data-driven approach with SRM means that it is possible

hat some cognitive functions may be partially distributed across fea-

ures, while others may not account for enough variance to be included

n the model. Nonetheless, in a follow-up analysis, we explored the re-

ationship of these features to cognitive functions that were evoked by

his movie. An earlier study annotated different events relevant to social

ognition in the same movie, including pain and mentalizing event types

 Jacoby et al., 2016 ). For each event type, we convolved the time series

f events with a double-gamma HRF and correlated it with the average

xpression of each shared feature from adults ( Fig. 6 ). For pain events,

nly one of the features (Feature 9) was reliably correlated ( p < 0.05, cor-

ected). For mentalizing events, none of the features were correlated.

nterestingly, Feature 9 was most strongly expressed in the cuneus of

dults and the oldest children, the postcentral gyrus near the temporo-

arietal junction of the middle age group (eight- and nine-year-olds) and

he posterior cingulate of younger children (Fig. S6). These findings in

dults and children over eight are in line with the prior studies showing

hat the cuneus is more active for pain than mentalizing events in adults

 Jacoby et al., 2016 ) and that bilateral postcentral gyrus is a node in the

ain network ( Bruneau et al., 2015; 2012 ). Although the posterior cin-

ulate is usually more activated for mentalizing events than pain events
7 
n adults, here it is related to pain processing in young children. These

esults highlight that the localization of pain processing in the develop-

ng brain is dynamic, with the role of the posterior cingulate and other

egions changing during this time. Furthermore, this shows that even

uite young children are capable of representing the pain state of oth-

rs, and that applying data-driven then confirmatory analyses can be a

owerful combination for understanding cognitive development in the

rain. 

. Discussion 

In this study, we sought to bring a new perspective to the long-

tanding question of how and when the developing brain becomes

adult-like ” ( Johnson, 2011; Somerville, 2016 ). The typical approach

or answering this question is to align children and adults into a com-

on anatomical space and compare activity between groups in the same

rain regions ( Cantlon and Li, 2013; Dosenbach et al., 2010; Fair et al.,

009; Gogtay et al., 2004; Richardson et al., 2018 ). Thus, even when

he goal is to understand functional similarities and differences over de-

elopment, anatomy serves as a guide and constraint. The alternative

pproach we employed is to align children and adults into a common

unctional space, which allowed us to quantify adult-like brain activity

n children without making any assumptions about a consistent map-

ing between function and anatomy over development. This anatomi-

ally agnostic approach has the advantage of finding representations in

he developing brain that may otherwise be overlooked. It does not re-

uire pre-specifying the type of function that is expected to differ across

evelopment a priori . Instead, it uses a data-driven approach to extract

ontent from the movie that explains brain activity and to identify where

n the brain this content is represented. In children as young as 3.5 years

ld watching a short movie, we found regions of the brain, especially

n occipital cortex, that reliably expressed functional features shared

mongst adults who watched the same movie. Based on where and how

trongly these features were expressed, we were able to build a predic-

ive model of age that depended only on brain activity during movie

atching. We then demonstrated the power of functional alignment by

evealing features of adult function that emerge and reorganize across

natomical locations over development. Finally, we showed how con-

rmatory hypothesis testing can be performed within this framework to

nterpret shared adult functions and how they develop. 

We interpreted increasing signal reconstruction with age as evidence

f functional specialization and maturation in the developing brain. A

elated but slightly different framing is that brain functionality itself was

ot always changing in these cases, but rather it was the way that chil-

ren deployed this functionality during the movie. For instance, if older

hildren attended to the content of the movie in a more adult-like fash-

on than younger children, this may have affected perceptual input to

ownstream functions and increased similarity to adult brain activity.

he defining characteristic of this interpretation is that younger chil-

ren may possess the capacity for such functions but not engage them

ecause of attentional differences in perceptual input. Even if attention

as allocated similarly across age, richer schematic knowledge in older

hildren may have enhanced their understanding of the movie narrative

 Brod et al., 2017; Ghosh and Gilboa, 2014 ) by highlighting connections

etween objects and events that may not otherwise be easily integrated.

gain, younger children may have the capacity for this kind of inte-

ration in principle but be unable to deploy it without access to the

elevant conceptual knowledge. Of course, attention and memory are

unctions of the brain, and so developmental differences in these func-

ions are what we sought to characterize in the first place. The key point

s that increasing signal reconstruction could reflect the development of

 function or of necessary perceptual or conceptual precursors to that

unction. 

Signal reconstruction allowed us to build a predictive model of age

ased on how strongly children’s brains represented the shared features

f adults. Our predictive model was highly significant, but a limitation
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Fig. 5. Trajectories of functional development within and across brain regions. (A–C) To understand the nature of developmental changes in signal reconstruction, 

we predicted activity from one adult feature at a time rather than all features. We used a functional parcellation to identify which regions expressed a given feature 

most strongly in each age group. Parcels with significant signal reconstruction of adult features within each age group ( p < 0.05, corrected) were ranked by the strength 

of the reconstruction. For ease of visualization, here we color up to the top five parcels for each feature and age group. The anatomical labels for these parcels were 

obtained from the Talairach atlas. Three example adult features are depicted across ages, illustrating developmental trajectories we refer to as emergence (Feature 

4), consistency (Feature 6), and reorganization (Feature 7). The top five parcels for the remaining features are depicted in Fig. S5 and all parcels that are significant 

for each group are displayed in Fig. S6. Asterisks indicate which parcels differed significantly in signal reconstruction of each feature across age groups ( p < 0.05, 

corrected; Fig. S7). 
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s that the strength of the relationship was moderate, and the mean er-

or in age was substantial for the sample’s age range. Larger sample

izes and more training data (i.e., longer movie) in future studies could

ncrease precision. Nonetheless, other studies using out-of-sample cross-

alidation methods like ours have found a similar range of relationship

trength ( Finn et al., 2015; Lin et al., 2018 ). 

A variant of the signal reconstruction approach allowed us to identify

ifferent types of developmental trajectories across adult features. We

sed ROIs defined by functional connectivity ( Schaefer et al., 2018 ) to

ap the developmental trajectories of neural features shared amongst

dults. The voxels that comprise a region in this atlas have homoge-

eous functional activity and connectivity in adults. We used the term

emergence ” to describe features of adult brain activity that were not

eliably expressed in any regions of young children’s brains, but ap-

eared in older children and were present in the same location up until

dulthood. Features that showed “consistency ” were those in which the

ocalization remained consistent in all of the age groups tested, includ-

ng the youngest children. Finally, features that showed “reorganiza-

ion ” were those that were reliably expressed in at least one parcel in

he brains of children and adults, but where the localization of these

arcels varied across ages. Therefore, features that exhibit the first tra-

ectory (emergence) may comprise late-developing cognitive functions,

hile the other feature types comprise cognitive functions that can be

epresented by younger children. 
8 
Although both emergence and consistency of features in adult re-

ions over development are consistent with multiple accounts of brain

evelopment, the reorganization of features over development cannot

e explained by a maturational account, which argues that certain

ognitive functions are tied to particular brain regions and minimally

nfluenced by the environment and nearby regions. This may apply

o certain highly specialized regions, such as for vision or language

 Kanwisher, 2010 ), but our results highlight that many adult features

re not characterized by a one-to-one mapping between structure and

unction, and that assuming this might obscure functional similarities

cross development. It is worth noting that a more pure form of reor-

anization, whereby a feature in adulthood is no longer expressed at

ll in the regions in which it was previously expressed, was less com-

on in our study. Instead, we tended to observe relative reorganization,

hereby the set of regions expressing a feature remains fairly consis-

ent over development but the rank order of which regions show the

trongest expression changes. For example, the precuneus was replaced

y the postcentral gyrus as the region with highest signal reconstruction

f feature 7 for children around 9 years old, even though the precuneus

ontinued to express the function through adulthood. Future work track-

ng individuals longitudinally should try to understand why reorganiza-

ion occurs and how it relates to environmental changes or new skill

cquisition (e.g., reading; Dehaene-Lambertz et al., 2018 ). 
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Fig. 6. Distribution of resampled correlation 

values between the average representation of 

shared features in a group of adults and two 

of the three cognitive constructs defined in 

Jacoby et al. (2016) . (A) For mental events, 

we did not find a significant relationship with 

any of the shared features of adults. However, 

we did find a significant positive correlation 

between Feature 9 and pain events ( p < 0.05, 

corrected). This feature was strongly expressed 

in the cuneus of adults and older children, 

the postcentral gyrus in the middle child age 

group, and the posterior cingulate of younger 

children. (B) Visualization of the z -scored time 

courses of individual features during the sec- 

ond half of the movie and the two cognitive 

constructs. Orange lines represent the HRF- 

convolved mentalizing events, and purple lines 

represent the HRF-convolved pain events. The 

feature time course lines are colored similarly 

to (A). 
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Our findings that several relevant features are present as early as

 years of age, in either the same or different regions as expressed in

dults, suggest early adultlike cognition. Even so, these data-driven fea-

ures remain abstract and are not easily decomposed into specific cog-

itive functions. Moreover, although the features captured unique and

ubstantial variance shared across adults, each may still embed multi-

le cognitive functions with similar temporal profiles of brain activity.

his has implications for interpreting features showing anatomical re-

rganization of function over development (e.g., Fig. 5 C). Specifically,

ur definition of reorganization was that the same functions were sub-

erved by different brain regions over development —that is, a cognitive

unction that manifests in region X of younger children is expressed in

egion Y of adults. This could occur if the original region was co-opted by

 different function ( Behrmann and Plaut, 2015 ) or if the nature of the

unction changed with increasing skill and expertise ( Johnson, 2001 ). 

However, the possibility of multiple functions being embedded in a

iven feature suggests an alternative interpretation. Namely, these func-

ions may have stable organization over development, but the relative

eighting of the functions as captured by the feature may change. Con-

ider a hypothetical feature that is active during the title and credits of

he movie. This feature might capture multiple language-related func-

ions engaged by these scenes, such as letter recognition in region X

nd semantic comprehension in region Y. We would expect even the

ounger age groups to respond to the orthography of the words and

hus show signal reconstruction in X, but perhaps only the older chil-

ren and adults would respond to the meaning of the words and show

ignal reconstruction in Y. Disentangling these possibilities requires a

etter understanding of how the abstract features from SRM relate to the

ontents of the movie and to the cognitive functions that are engaged.

uture studies could make progress in this direction by using reverse

orrelation ( Hasson et al., 2004 ) or hand-coded events in the movie to

etter ascertain the functional profile of the features. Indeed, we found

hat Feature 9 was related to the processing of pain events identified by

rior annotations of the movie. This pain-related feature demonstrates

he power of our data-driven approach to understanding cognitive devel-

pment, as it was expressed in different regions of the brain in younger

hildren and adults. Although the regions recruited in older children and

dults were predicted by previous research ( Bruneau et al., 2015; Jacoby
9 
t al., 2016 ), the region recruited in younger children, the posterior cin-

ulate, is typically associated with mentalizing rather than observing

hysical pain ( Bruneau et al., 2015; Saxe and Powell, 2006 ). Thus, sig-

al reconstruction allowed us to find evidence for commonalities in the

bility to process pain events over development, despite differences in

natomical localization. Although annotations were not available for

ther types of events, this movie likely engaged other functions related

o visual processing, object recognition, and narrative comprehension.

he relationship between adult shared features and these cognitive func-

ions remains an avenue for future research. 

Future work could also address the cognitive underpinnings of

hared features by selecting or designing movies to target specific cog-

itive functions. Indeed, a constraint in our study, and SRM more gen-

rally, is that the features extracted depend on the movie. The use of

ther data for functional alignment, including from live action videos,

ifferent sensory modalities, or synchronized trials of varied cognitive

asks could sample cognition even more broadly. This might allow SRM

o learn a richer functional space that provides a more complete picture

f functional brain development across childhood. Additionally, it might

eveal other types of developmental trajectories that were not evident

n the current study. In one of the three types of neural trajectories we

efined (reorganization), a function that may be present behaviorally

rom a young age undergoes neural changes, such that it is subserved

y one region early on before reorganizing to another region later in

evelopment. The transition between these two regions may inform be-

avioral findings of a U-shaped (or inverted U-shaped) curve, where

ounger children and adults are more similar than children of inter-

ediate ages ( Siegler, 2004 ). Combining this approach with behavioral

easures could therefore reveal why such changes occur. 

Another limitation of the current study is that we rely on shared fea-

ures learned in adults, yet there may be developmental changes within

he adult cohort. Indeed, the adult sample includes a large age range,

nd we found some evidence that younger adults had higher signal re-

onstruction than older adults (Fig. S3). However, the younger adults

omprise a larger proportion of the sample, which likely biased the SRM

eatures to be more consistent with their features. Regardless, any adult

eterogeneity does not compromise our analyses of children; signal re-

onstruction within the adults was reliable across the sample, suggesting
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hat the shared response was able to capture functions that are stable

ver this age range. One takeaway from this result is that our approach

an be applied successfully to adults (akin to Richard et al., 2019 ). It

lso hints at the possibility of learning shared features in younger age

roups and testing on older age groups. Thus, in addition to characteriz-

ng the emergence of adult features of cognition over development, our

nalyses could be applied in reverse to answer the complementary ques-

ion of what child features disappear over development into adulthood

or in aging from young adults to the elderly). Future work with larger

ohorts of similarly-aged children may be able to answer this question. 

We focused on brain development, but the techniques in our paper

ould be applied productively to a number of questions that involve

omparing functional activity across groups. For instance, learning the

unctional features shared amongst a clinical population and then re-

onstructing these features in an undiagnosed individual may be use-

ul for predicting whether the individual will develop the condition.

his method could also be used to assess how and when a learner’s

rain starts to resemble that of an expert over the course of training.

ecause signal reconstruction does not require that the group and indi-

idual have the same brain sizes or even anatomical organization, this

pproach could even be applied between humans and non-human an-

mals to trace how cognitive functions are shared over phylogeny. In-

eed, there is no requirement that the group and individual be brains

t all, which could, for example, allow states of a computational model

o be ported into the brain for model-based analysis, or vice versa for

rain-computer interfaces. 
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