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Functional brain networks are assessed differently earlier versus later in development: infants are almost universally scanned asleep,
whereas adults are typically scanned awake. Observed differences between infant and adult functional networks may thus reflect
differing states of consciousness rather than or in addition to developmental changes. We explore this question by comparing functional
networks in functional magnetic resonance imaging (fMRI) scans of infants during natural sleep and awake movie-watching. As a
reference, we also scanned adults during awake rest and movie-watching. Whole-brain functional connectivity was more similar within
the same state (sleep and movie in infants; rest and movie in adults) compared with across states. Indeed, a classifier trained on patterns
of functional connectivity robustly decoded infant state and even generalized to adults; interestingly, a classifier trained on adult state
did not generalize as well to infants. Moreover, overall similarity between infant and adult functional connectivity was modulated by
adult state (stronger for movie than rest) but not infant state (same for sleep and movie). Nevertheless, the connections that drove this
similarity, particularly in the frontoparietal control network, were modulated by infant state. In sum, infant functional connectivity
differs between sleep and movie states, highlighting the value of awake fMRI for studying functional networks over development.
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Introduction
The discovery of resting-state functional connectivity, or the
synchronous fluctuation of brain regions during rest, transformed
the way that neuroscientists think about brain function (Biswal
et al. 1995, Biswal 2012). In the decades since its discovery, resting-
state functional magnetic resonance imaging (fMRI) has been
used to map different functional networks of the brain (e.g.
default mode, control, and salience networks; Raichle et al. 2001,
Corbetta and Shulman 2002, Dosenbach et al. 2006), describe
brain network properties like modularity and flexibility (Bullmore
and Sporns 2009, Bassett and Sporns 2017), predict cognitive
abilities (Finn et al. 2015, Rosenberg et al. 2016), characterize
reliable individual differences (Gordon et al. 2017, Gratton et al.
2020), and establish clinical biomarkers (Baker et al. 2019,
Dhamala et al. 2023). Given this, resting-state fMRI has been
increasingly used in developmental populations to track the
emergence of functional networks relevant to cognition (Grayson
and Fair 2017, Fair et al. 2021) and developmental disorders
(Milham et al. 2012, Finn et al. 2014, Hull et al. 2017), including
in dozens of published studies in infants (Gao et al. 2017, Zhang
et al. 2019) and large-scale, longitudinal data collection efforts
(e.g. HBN and ABCD in adolescents, BCP, dHCP, and HBCD in
infants; Alexander et al. 2017, Casey et al. 2018, Howell et al.
2019, Fitzgibbon et al. 2020, Eyre et al. 2021, Volkow et al. 2021).

Resting-state functional connectivity is typically acquired
while participants perform the simple task of staring at a
fixation cross and letting their minds freely wander. Participants
are actively discouraged from closing their eyes and falling
asleep, as this impacts functional network measurements

(Tagliazucchi and Laufs 2014). More recently, however, naturalistic
stimuli (such as movies) have become popular for collecting
functional network measures (Sonkusare et al. 2019), particularly
in developmental populations (Vanderwal et al. 2019), given that
they help reduce head motion (Vanderwal et al. 2015, Frew et al.
2022). Functional brain networks differ between rest and movies
in both adults (Betti et al. 2013, Lynch et al. 2018) and over
development (Sanchez-Alonso et al. 2021). In fact, movies are
increasingly being recognized as better than traditional fixation-
rest tasks for test–retest reliability (Wang et al. 2017, Zhang et al.
2022), characterizing individuals (Vanderwal et al. 2017), and
predicting behavior (Finn and Bandettini 2021, Gal et al. 2022),
perhaps because movies (unlike rest) create a consistent brain
state over time across participants. This has led some to argue
for the need to examine the dynamics of cognitive states during
typical resting-state (Gonzalez-Castillo et al. 2021) and to embrace
more task-like paradigms (Finn 2021).

Yet, when it comes to infants, resting-state functional con-
nectivity is measured differently: infant functional networks are
almost exclusively assessed during natural sleep (Zhang et al.
2019). This is a reasonable approach, especially for young infants
who spend lots of time sleeping (Poppe et al. 2021). Moreover, from
a practical perspective, it is notoriously difficult to collect fMRI
data in awake infants, who move at will, cannot understand or
follow instructions, have short attention spans, and need frequent
touch, feeding, and diaper changes. Nonetheless, studying the
infant brain only in the sleep state may provide an incomplete
picture, given sleep/wake differences in adults (Tagliazucchi and
Laufs 2014, Song and Tagliazucchi 2020) and the sometimes
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limited reliability of functional connectivity in sleeping infants
(Dufford et al. 2021, Wang et al. 2021). Thus, apparent differences
in functional brain networks between infants and older popula-
tions may not be attributable entirely to development per se and
could be confounded by different states of consciousness. In line
with this, the organization and properties of infant functional
networks during sleep are more similar to adults in deep sleep
than adults who are awake (Mitra et al. 2017).

Although qualitatively similar (Larson-Prior et al. 2009, Houldin
et al. 2019), in adults, functional networks differ between sleep-
/wake states (Tagliazucchi and Laufs 2014) and across sleep stages
(Haimovici et al. 2017, Stevner et al. 2019). Such state differences
are pronounced in higher order associative networks, particularly
the frontoparietal control and default mode networks (Horovitz
et al. 2009, Spoormaker et al. 2012, Houldin et al. 2021). In general,
sleep/wake differences in these networks come in the form of
reduced functional connectivity during sleep. Similar results have
also been found in other altered states, including under anes-
thesia (Boveroux et al. 2010, Qiu et al. 2017; cf. Chamberlain and
Rosenberg 2022) and in disorders of consciousness (Li et al. 2023).

Currently, it is unknown whether scanning infants in an awake
state may likewise yield differences in functional network mea-
sures. There are some reasons to believe that functional networks
may not differ between sleep/wake states in infants. Indeed,
infant sleep is different from adult sleep, with developmental
changes in the interaction between the brainstem and cortex
in rodents (Blumberg et al. 2014, Cirelli and Tononi 2015) and
in sleep patterns and electroencephalography (EEG) microstruc-
ture in humans (Lokhandwala and Spencer 2022). Furthermore,
infants spend more time in rapid eye movement (REM) sleep
(Roffwarg et al. 1966, Knoop et al. 2021), which in adults tends to
be more similar to wakefulness than non-REM sleep (Chow et al.
2013). Finally, the higher order associative networks that most
distinguish sleep from wake in adults have a more protracted
structural development than sensorimotor networks (Giedd and
Rapoport 2010, Sydnor et al. 2021) and are observed inconsistently
in sleeping infants (Hu et al. 2022a).

At the same time, there is also some suggestive evidence that
functional networks may differ between sleep/wake states in
infants. In fact, in the very first awake infant fMRI study, the pre-
frontal cortex was activated by forward versus backward speech
but only during wake and not sleep states (Dehaene-Lambertz
2002). Indeed, there is growing evidence in awake studies that
the prefrontal cortex contributes to cognitive function early in life
(Raz and Saxe 2020, Ellis et al. 2021), despite its protracted devel-
opment. As a result, higher order associative networks, includ-
ing key nodes in the frontal lobe, may be more engaged and
more inter-connected when infants are awake compared with
asleep, when these networks may show reduced connectivity.
Thus, infant functional networks may appear more adult-like
when acquired in an awake state.

Recent advances have made it possible to scan infants with
fMRI while they are awake and engaged in cognitive tasks (Ellis
et al. 2020). This allowed us to examine infant functional net-
works during the wake state. Namely, we measured functional
connectivity in infants scanned while they watched a movie
awake and compared this with functional connectivity while they
slept naturally. We further compared the infant data with awake
adults scanned while watching the same movies or completing
a canonical resting task with fixation. We used an adult atlas
for parcellation and network labels (Schaefer et al. 2018) as in
past studies (Sanchez-Alonso et al. 2021, Kardan et al. 2022), so as
to have common regions for comparisons across age groups. We

first tested whether infants have a more similar pattern of whole-
brain functional connectivity within (sleep–sleep, movie–movie)
versus across (sleep–movie, movie–sleep) behavioral states. We
next used pattern classification to decode behavioral state from
functional connectivity patterns within and across age groups. We
then tested whether having infants watch movies increases the
similarity of their functional connectivity patterns to adults (who
are typically scanned awake in functional connectivity studies). To
interpret the resulting similarity, we quantified the contributions
of individual network connections within and across functional
networks. The results show that although both infant sleep and
infant movie yield adult-like functional connectivity, the networks
involved are modulated by state. This highlights the value of both
sleep and awake infant fMRI for characterizing the nature and
early development of functional brain networks.

Materials and methods
Participants
Sleep fMRI data were collected from 14 unique infants (7 female)
who fell asleep naturally while we collected data for other awake
fMRI experiments (not discussed here). In total, we obtained 20
usable sleeping runs from infants ranging from 3.9 to 24.9 mo of
age (M = 11.2, SD = 5.0 mo). One participant contributed 2 sleep
runs in the same session, separated by 8.5 min. Five participants
had more than one session with usable sleep data (M = 1.4
sessions, range: 1 to 3 sessions), with an average of 5.3 mo between
sessions (range: 1.3 to 15.0 mo). One additional sleep run was
excluded because the infant woke up after 1.5 min.

Movie-watching fMRI data were collected from 22 unique
infants (14 female) who watched 1 of 2 cartoon movies, described
in detail in a previous publication (Yates et al. 2022). Six of these
movie participants overlapped with the sleep participants. In
total, we obtained 34 usable movie-watching runs from infants
ranging from 3.6 to 32.6 mo of age (M = 12.8, SD = 7.3 mo).
Two participants had 2 usable movie-watching runs in the same
session, separated by several minutes (10.5 and 15.9 min). Six
infants completed more than one session with usable movie-
watching runs (M = 1.5 sessions, range: 1 to 6 sessions), with
an average of 3.5 mo between consecutive sessions (range: 1.4
to 6.3 mo). The 34 runs do not include data from infants who
had excessive head motion (>3mm framewise displacement)
for more than 4% of the time (N = 37), who did not look at the
screen during more than half of the movie (N = 6), who did not
complete the movie because of fussiness (N = 9), or because of
technical error (N = 1). The strict threshold of 4% maximum
motion timepoints (rather than 50%, which we typically use for
task-based awake infant fMRI studies) was chosen to equate the
average proportion of usable timepoints between infant sleep and
infant movie groups.

For comparison, we collected awake resting (staring at fixation)
and movie-watching runs from 12 adults (7 female) aged 18 to 32
yr (M = 21.4, SD = 3.4 yr). We supplemented these 12 new adult
movie-watching runs with 66 additional movie-watching runs we
previously collected for other studies from 48 unique adults (27
female, age: M = 21.8, SD = 3.2 yr). In total, we thus had 12 runs of
awake fixation-rest and 78 runs of movie-watching from adults.
This does not include movie runs in which adults fell asleep part-
way (N = 2) or runs with excessive head motion (>3mm framewise
displacement; N = 1).

Infants who participated at Yale University (N = 10 sleep, N = 19
movie) were recruited through the Yale Baby School, an outreach
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initiative to families who give birth at the Yale New Haven Hospi-
tal. Infants who participated at Princeton University (N = 4 sleep,
N = 3 movie) were recruited via word-of-mouth and flyers. We did
not have permission to collect detailed demographic information
on the families at either site. However, to provide an approximate
sense of the sample composition, we did obtain IRB approval to
collect education, race, and ethnicity data in our most recent
participant pool for subsequent studies at Yale University (N =
51 families): the education of the primary caregiver was 25%
Doctoral degree, 29% Master’s degree, 24% Bachelor’s degree, 2%
Associate’s degree, 10% some college, 4% vocational/trade school,
4% high school diploma, and 2% some high school; the race of the
infants was identified as 61% White, 24% Asian/Asian–American,
12% Black/African–American, 2% two or more races, and 2%
unknown; and the ethnicity of the infants was identified as
80% Non-Hispanic/Latino, 18% Hispanic/Latino, and 2% unknown.
Adults were recruited from the New Haven, Connecticut area. No
demographic information was obtained from these participants,
although many were affiliated with Yale University. The study
was approved by the Human Subjects Committee (HSC) at Yale
University. All adults provided informed consent, and parents
provided informed consent on behalf of their infant.

Materials
Infant sleep runs were collected during natural sleep with the
display turned off, without visual stimulation. Sleep state was not
assessed physiologically, but all infants were assumed to be asleep
based on extended eye closure and stillness, as viewed online via
an MR-safe camera. Infants stayed asleep for variable durations,
between 1.76 and 5.97 min (M = 4.31, SD = 1.34 min). We often
stopped a sleep scan after 5 min to transition to anatomical scans
or to try waking the child up for additional awake functional runs.
Otherwise, we kept collecting sleep data until the child naturally
woke up.

Infant movie runs were collected while infants watched 1
of 2 silent cartoon movies, previously described in Yates et al.
(2022). The first movie, “Aeronaut”, is a 3-min long segment of
a short film about a miniature pilot and a little girl (https://
vimeo.com/148198462). For all participants, the movie spanned
45.5 visual degrees in width and 22.5 visual degrees in height. The
second movie, “Mickey”, is a 2.37-min long segment of popular
cartoon show where characters celebrate a birthday party. This
movie was displayed in a smaller size, spanning 22.75 visual
degrees in width and 12.75 visual degrees in height. Movie runs
were collected while infants watched Aeronaut once (N = 25),
Aeronaut twice in a row (N = 1), Mickey once (N = 7), or Mickey
twice in a row (N = 1). We collapsed across both movies in all
analyses, to capture the general effect of movie-watching on
functional connectivity. Infant movie runs were thus between 2.37
and 6.00 min long (M = 3.01, SD = 0.66 min).

Adult fixation-rest runs were collected during quiet rest while
participants stared at a white fixation cross (2 visual degrees) on a
black background. Participants were not instructed to think about
anything in particular. These rest runs always lasted 5 min, and
the order of rest and movie-watching runs was counterbalanced
across the 12 participants who completed both. Adult movie-
watching data consisted of participants who watched Aeronaut
once (N = 52), Mickey once (N = 11), or Mickey twice in a row (N =
15), often interleaved with other movie-watching or experimental
runs not described here. Adult movie runs were between 2.37 and
4.73 min long (M = 3.24; SD = 0.76 min).

The code used to display the movies and fixation is available at
https://github.com/ntblab/experiment_menu/tree/Movies/. The

code used to perform the data analyses is available at https://
github.com/ntblab/infant_neuropipe/tree/RestingState/. Raw and
preprocessed functional data are available on DataDryad: https://
datadryad.org/stash/dataset/doi:10.5061/dryad.nvx0k6dzf.

Data acquisition
We used a previously validated procedure for collecting infant
fMRI data (Ellis et al. 2020) and adult comparison data. All adult
data and most infant data (N = 16 infant sleep runs, N = 26 infant
movie runs) were collected at the Brain Imaging Center in the
Faculty of Arts and Sciences at Yale University. Data were acquired
using a Siemens Prisma (3T) MRI using the bottom half of the 20-
channel head coil. We used a whole-brain T2∗ gradient-echo EPI
sequence (TR = 2s, TE = 30ms, flip angle = 71, matrix = 64x64, slices
= 34, resolution = 3mm iso, interleaved slice acquisition) to acquire
functional images for both adults and infants. For infants, we
collected a T1 PETRA sequence (TR1 = 3.32ms, TR2 = 2250ms, TE
= 0.07ms, flip angle = 6, matrix = 320x320, slices = 320, resolution
= 0.94mm iso, radial slices = 30,000) as the anatomical image. For
adults, we collected a T1 MPRAGE sequence (TR = 2300ms, TE =
2.96ms, TI = 900ms, flip angle = 9, iPAT = 2, slices = 176, matrix =
256x256, resolution = 1.0mm iso), which included the top half of
the 20-channel head coil. The remaining infant movie and sleep
runs were collected at the Scully Center at Princeton University
(N = 4 sleep, N = 5 movie) using a Siemens Skyra (3T) MRI and at the
Magnetic Resonance Research Center (MRRC) at Yale University
(N = 3 movie) using a Siemans Prisma (3T) MRI. All acquisition
procedures were the same, with the exception that the functional
EPI sequence had slightly different parameters at these latter 2
sites (TE = 28ms, slices = 36).

Procedure
All procedures followed lab conventions that have been used in
our prior publications (e.g. Ellis et al. 2021, Yates et al. 2022).
Infants and their parents met with researchers prior to their
first scanning session. For almost all participants, these visits
were conducted in-person as a “mock scanning” session; how-
ever, some visits were conducted over zoom in accordance with
COVID-19 policies. We then scheduled scans for times the families
thought their infant would be most comfortable. We extensively
screened parents and infants for metal before and on the day
of the scan. Infants were then equipped with 3 layers of hearing
protection: silicone inner ear putty, over-ear adhesive covers, and
ear muffs. Parents were permitted to bring comfort items (e.g.
metal-free blankets) for their infant, and infants were wrapped
with a vacuum pillow to reduce movement. We projected stimuli
directly on the ceiling surface of the scanner bore, and recorded
participants’ faces with a camera (MRC high-resolution camera)
during the session. Adults similarly viewed stimuli on the scanner
bore ceiling and were monitored with a camera, but only had 2
layers of hearing protection (earplugs and optoacoustics noise-
canceling headphones), were not given comfort items or a vacuum
pillow, and did not attend a mock scanning session. For both
adults and infants, additional tasks were sometimes run during
their scanning session.

Gaze coding
During infant movie-watching runs, gaze was coded offline by
2–6 coders (M = 2.39, SD = 0.98). Coders determined whether the
participant’s eyes were on-screen, off-screen (i.e. closed, blinking,
or looking off of the screen), or undetected (i.e. out of the camera’s
field of view). In one infant, technical issues prohibited us from
collecting gaze data, but this infant was monitored live by a
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researcher during data collection and determined to be attentive
enough to warrant inclusion. Coders were highly reliable, report-
ing the same response code on an average of 93.58% (SD = 4.87%;
range across participants = 76.62–99.62%) of frames. The modal
response across coders from a moving window of 5 frames was
used to determine the final response for the frame centered in
that window. The response from the previous frame was used in
the case of ties. Frames were pooled within fMRI timepoints, and
the average proportion of timepoints included for eyes being on-
screen was high (M = 92.72%, SD = 9.45%; range across participants
= 63.38–100%). Gaze data were not collected during infant sleep
or adult rest runs, and gaze data were not analyzed for adult
movie runs.

Preprocessing
Data were preprocessed using a custom awake infant fMRI
pipeline (Ellis et al. 2020). All adult data came from distinct
functional runs, while movie and sleep data from infants were
sometimes cleaved into pseudo-runs when another task was
performed in the same functional run (N = 14 sleep runs, N = 20
movie runs). We discarded 3 burn-in volumes from the beginning
of each run/pseudo-run. Then we determined the centroid
volume of each run/pseudorun by calculating the Euclidean
distance between the brain mass in all volumes and choosing the
volume that minimized the spatial distance to all other volumes,
using this as the reference for motion correction. Volumes were
realigned using slice-timing correction. During preprocessing, we
excluded timepoints with greater than 3 mm of translational
motion, temporally interpolating them so as not to bias linear
detrending. In additional analyses, we examined the impact of a
stricter motion threshold (0.2 mm).

We included participants who had more than 96% of time-
points without motion. Thus, almost all timepoints were included
after motion exclusion in infant sleep runs (M = 99.74%, SD =
0.75%; range across participants = 96.72–100%), infant movie runs
(M = 99.64%, SD = 0.76%; range across participants = 96.67–100%),
adult rest runs (all 100% usable), and adult movie runs (M =
99.99%, SD = 0.12%; range across participants = 98.89–100%). Aver-
age framewise displacement was also low in general: infant sleep
runs (M = 0.22 mm, SD = 0.10; range = 0.06–0.44), infant movie
runs (M = 0.34, SD = 0.22; range = 0.09–0.76), adult rest runs (M =
0.08, SD = 0.02; range = 0.05–0.11), and adult movie runs (M = 0.10,
SD = 0.07; range = 0.05–0.47). However, there was higher motion on
average for infant movie runs compared with infant sleep runs
(P < 0.001), and for adult movie runs compared with adult rest
runs (P = 0.026). In subsequent analyses, we excluded motion
confound timepoints, and for infant movie runs, we also excluded
timepoints during which eyes were closed for a majority of movie
frames in the volume (out of 48, given the 2-s TR and movie frame
rate of 24 frames-per-second). We constructed the mask of brain
versus non-brain voxels by thresholding based on the signal-to-
fluctuating-noise ratio (Friedman and Glover 2006). Then, data
were spatially smoothed with a Gaussian kernel (5mm FWHM)
and linearly detrended in time. We used AFNI’s (https://afni.nimh.
nih.gov) despiking algorithm to attenuate aberrant timepoints
within voxels. Finally, after removing excess burn-out TRs, func-
tional data were z-scored within run/pseudorun.

The centroid functional volume was first registered to the
anatomical image using FLIRT in FSL (Jenkinson et al. 2012),
and adjusted manually as needed using MR-Align from mrTools
(Gardner et al. 2018). Then, the anatomical image was aligned
into standard space using ANTs (Avants et al. 2011), a nonlin-
ear alignment algorithm. For infants, we used an initial linear

alignment with 12 DOF to align their anatomical data to an age-
specific infant template in MNI space (Fonov et al. 2009), followed
by nonlinear warping using diffeomorphic symmetric normaliza-
tion. After this alignment, we used a predefined transformation
(12 DOF) to linearly align between the infant template and adult
MNI standard (MNI152). For adults, we used the same alignment
procedure, except that participants were directly aligned to the
adult MNI standard. For all analyses, we only considered voxels
included in the intersection of all infant and adult brain masks.

Whole-brain functional connectivity
Functional connectivity matrices were created using the Schaefer
brain atlas parcellation (Schaefer et al. 2018). The Schaefer atlas
consists of parcels discovered from resting-state functional con-
nectivity data in adults and is available at multiple resolutions.
To match the number of brain regions found in neonatal resting-
state analyses (Scheinost et al. 2016), and to account for potential
anatomical variability across participants, we used the 100-parcel
version of the Schaefer atlas. These parcels were matched to
7 functional networks—visual, somatomotor, dorsal attention,
ventral attention, limbic, frontoparietal control, and default (Yeo
et al. 2011). The number of parcels that made up each network
ranged from 5 (limbic) to 24 (default), with an average of 14.29
parcels. Note that these network labels for parcels correspond
to adult functional networks, and their applicability to infant
functional networks has not been established. Nonetheless, we
use these labels throughout the manuscript to give an idea of the
localization of our effects with respect to adult data.

To construct individual functional connectivity matrices, we
averaged BOLD activity over all voxels in each parcel and corre-
lated this average timeseries with every other parcel using Pear-
son correlation, after excising motion timepoints. The resulting
coefficients were transformed into z-scores by normalizing to
the average and standard deviation of the correlations across
parcels, to account for potential differences in absolute correla-
tion values across groups. We created group-level connectivity
matrices by averaging across runs within group. To measure
similarity within group, we correlated the upper triangle of each
individual run’s functional connectivity matrix with the average
functional connectivity matrix for all but that run. We refer to this
correlation as “intersubject similarity,” as it tells us how similar
a given individual is to the group, with higher values meaning
that there is a pattern of functional connectivity that is consistent
across individuals. We used an analogous procedure for calculat-
ing similarity across groups, by correlating an individual’s upper
triangle with the other group’s average of all runs. In our main
analyses, we considered all runs from each group, including from
different sessions of the same participants. In additional analyses,
we report an alternative approach in which we first averaged
runs from the same participant to ensure that only between-
participant variance contributed to the results.

We used bootstrap resampling to evaluate the statistical relia-
bility of these functional connectivity similarity scores (Efron and
Tibshirani 1986). Specifically, we randomly sampled with replace-
ment from the run-level similarity values (z-scored Pearson cor-
relations) to form a new sample of the same size as the original
group, computed the average similarity of the sampled values, and
repeated this procedure 1,000 times to create a sampling distri-
bution. This approach also allowed us to compute the reliability
of differences between states and groups: on each resampling
iteration, we subtracted the mean similarity within one state or
group from the mean similarity with another state or group to
create a sampling distribution of the difference. We calculated P
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values as the proportion of iterations with the opposite sign of the
original effect, doubled for a 2-tailed test.

Decoding state within and across age groups
We further investigated how states modulated functional con-
nectivity using pattern classification. The input features for the
classifier models were the correlation values for every parcel-to-
parcel connection in the upper triangle of the functional connec-
tivity matrix and the output was the state during which functional
connectivity was measured. To assess how different networks
contributed to decoding accuracy, we also trained and evaluated
classifiers on the subset of features within and across specific
networks.

For each age group, we divided runs into training and test sets
(approximately 90% training and 10% test), while subsampling
runs from the more populous state so that the classifier was
trained and tested with 50% of the examples from each state.
In the training set, we further split the data (again 90% training
and 10% test) to tune the cost parameter of a linear support
vector machine classifier. The best cost parameter from these
inner loops was used to train the classifier on the whole training
set that was then applied to the held-out test data. This procedure
was iterated across 10 folds. We used a generalization approach to
assess whether the same features were important for classifying
state in adults and infants by applying the best classifier trained
in one age group to the other age group.

To determine statistical significance for classification analy-
ses, we used the same bootstrap resampling approach as before,
resampling with replacement at the run level 1,000 times. The
P value was calculated as the proportion of iterations where
classification accuracy was lower than chance (50%), doubled for
a 2-tailed test. For network analyses, we visualize all network
connections that are significant at the 0.05 level, and additionally
indicate which connections survive Holms–Bonferroni correction
on the alpha value.

Our main classification analyses required subsampling runs
from the more populous state, which in theory could lead to
underpowered results. Thus, in additional analyses, we retained
the original distribution of participants from each state (e.g. 63%
of infant runs were awake movie-watching, so the training and
test set each had 63% movie runs). This meant that chance
accuracy would no longer be 50%, as a random model would tend
to guess the more populous state. Thus, for calculating statistical
significance, we compared the true accuracy with a permuted
null distribution, creating an “empirical chance.” Specifically, we
repeated the full classification pipeline 1,000 times after ran-
domly shuffling the labels. We then transformed the true classi-
fication accuracy into a z-score by subtracting the mean of the
null distribution and dividing by its standard deviation. The P
value was calculated as the proportion of iterations in the null
distribution with higher classification accuracy than the true
effect, doubled for a 2-tailed test.

Similarity of functional connectivity between
infants and adults
We next tested for differences in the similarity of functional
connectivity across groups (e.g. infant sleep to adult movie vs.
infant movie to adult movie). First, we tested for the main effect
of infant state on overall similarity to adults: (infant sleep to adult
movie + infant sleep to adult rest) - (infant movie to adult movie
+ infant movie to adult rest). Then, we tested for the main effect
of adult state on overall similarity to infants: (infant sleep to adult
rest + infant movie to adult rest) - (infant sleep to adult movie +

infant movie to adult movie). Finally, we tested for an infant state
by adult state interaction: (infant sleep to adult movie - infant
movie to adult movie) - (infant sleep to adult rest - infant movie to
adult rest). For each test, we performed bootstrap resampling on
the contrast values across participants to determine significance.

Finally, we evaluated the relationship between functional
connectivity similarity and participant age with bootstrap
resampling. Namely, we randomly sampled bivariate similarity-
age pairs with replacement and re-calculated the Pearson
correlation between similarity and age over the sampled pairs
on each of 1,000 iterations. Again, the P value was calculated as
the proportion of resampled coefficients with the opposite sign
as the original effect, doubled for a 2-tailed test.

Contribution of individual connections to overall
network similarity
To understand which parcels drove overall similarity between
2 functional connectivity matrices, we used the fact that the
Pearson correlation between 2 variables (in this case, vectorized
matrices) is the sum of their pointwise products, after normalizing
each variable by mean-centering and dividing by the root sum of
squares (Turk-Browne 2013). Thus, for each run, the normalized
pointwise product for a given cell in the matrix quantifies how
much the functional connectivity between that pair of parcels
contributed to the overall network similarity between that run
and the average of other runs. We tested where in the brain these
normalized pointwise product values differed between group and
state comparisons. For example, we asked whether the same or
different connections made sleeping versus movie infants similar
to adults.

First, for each comparison of functional connectivity between
an individual run and the average of a different group (e.g. a single
infant sleep run to all adult rest runs), we created a normalized
pointwise product matrix, where summing the values of the
upper triangle of this matrix would equal the Pearson correlation
between the upper triangles of the individual participant and
group functional connectivity matrices. All values of pointwise
product matrix were then converted to relative or proportional
scores by dividing them by the overall correlation. We visualize the
magnitude of these parcel-by-parcel contributions to the overall
similarity between 2 groups by averaging across participants and
plotting the top 1% of contributing connections on a Circos plot.

Next, we tested for differences in the contributions of con-
nections between one group comparison (e.g. infant sleep and
adult rest) and another group comparison (e.g. infant movie and
adult rest). We visualize the top 1% of connections that con-
tributed more to the similarity of one comparison over the other
by subtracting the mean normalized pointwise product values
from one another. We then ran our statistics at the network
level. Specifically, we averaged the normalized pointwise product
values for each group comparison per network (e.g. all parcel
connections within the visual network, all parcel connections
between the visual and somatomotor networks, etc.). Then, as
before, we used bootstrap resampling to calculate the statistical
reliability of differences. On each iteration, we subtracted the
mean normalized pointwise product of one group comparison
from the mean normalized pointwise product value of the other
group comparison. In additional analyses, we also used a con-
nection lesioning approach, where we assessed how removing one
connection at a time changed the resulting correlation between
groups. As with the decoding analysis, we visualize all network
connections that are significant at the 0.05 level, and additionally
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Fig. 1. Functional connectivity (FC) in infants and adults in different behavioral states. (A, C) Visualization of the average z-scored FC matrix in infants and
adults, respectively. (B, D) Intersubject similarity values comparing the upper triangle of the FC matrix for an individual run with the average FC matrix
of all other runs within the infant and adult age groups, respectively, for the same state (orange and green) or different states (purple). For example,
“Sleep-Same” refers to the average correlation between the sleep FC matrix from one infant and the average sleep FC matrix from all other infants, while
“Sleep-Diff.” refers to the average of the same individual sleep FC matrices correlated with the average movie FC matrix. The dots represent individual
run data and error bars represent 95% bootstrap confidence intervals. ∗∗∗ P <0.001, ∗∗ P <0.01, ∗ P <0.05. Network labels: visual (Vis), somatomator
(SomMat), ventral attention (VentAttn), limbic, dorsal attention (DorsAttn), default, and frontoparietal control (Cont).

indicate which connections survive Holms–Bonferroni correction
on the alpha value.

Results
Functional network similarity within and across
behavioral states
We first assessed the similarity of infant functional networks
during natural sleep and awake movie-watching (Fig. 1A) by cor-
relating the functional connectivity matrix of a single infant
run with the average of all other infant runs. We found that
infant functional networks were highly similar across partici-
pants within sleep (M = 0.681) and movie (M = 0.633) states,
with slightly lower similarity across these 2 states (individual
sleep to average movie: M = 0.614; individual movie to average
sleep: M = 0.564). Average similarity did not significantly differ
between sleep and movie (difference M = 0.048, P = 0.066; Fig. 1B).

Within-state similarity was higher than across-state similarity for
sleep (difference in sleep–sleep and sleep–movie: M = 0.067, P =
0.018), and for movie (difference in movie–movie and movie–sleep:
M = 0.069, P <0.001). We used a somewhat liberal motion exclusion
threshold as in prior studies (Ellis et al. 2020, 2021, Yates et al.
2022), but similar results were obtained with a stricter threshold
(Fig. S1). These analyses contained more than one session or
run from a subset of participants (mixing within- and between-
participant variance), but the results were again similar if we first
averaged runs within each unique participant to isolate between-
participant variance (Fig. S2). Finally, given the importance of
data quantity in functional connectivity analyses (Sylvester et al.
2023), we reran our analyses retaining only participants who had
more than 2.9 min of usable data across runs within session.
This amount of data can yield 95–100% accuracy in predicting
infant functional connectomes (Wang et al. 2021). We replicated
the pattern of results from our main analyses of infants and
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adults in this restricted sample (Fig. S3). The one exception is
that by restricting our analyses to those infants with the most
usable data, we saw greater intersubject similarity within the
sleep state compared with within the movie state (see also Fig.
S1). However, this effect disappeared when all data were fixed
to the same duration (Fig. S4). Thus, infant functional networks
show comparable similarity across participants within sleep and
movie states. Nonetheless, the network configurations seem to
differ between states, as evidenced by decreased similarity across
sleep and movie states compared to within states.

We next performed parallel analyses in adults as a point of
comparison for the infant data (Fig. 1C). Adult functional net-
works were highly similar across runs in rest (M = 0.663) and
movie (M = 0.640) states, with slightly lower similarity across these
2 states (individual rest to average movie: M = 0.599; individual
movie to average rest: M = 0.539). Average similarity did not
significantly differ between rest and movie (difference M = 0.023,
P = 0.172; Fig. 1D). Within-state similarity was higher than across-
state similarity for both rest (difference in rest-rest and rest-
movie: M = 0.063, P = 0.006) and movie (difference in movie–movie
and movie–rest: M = 0.101, P <0.001). Importantly, the range and
pattern of intersubject similarity values for adults was almost
identical to that of the infants, confirming the quality of the
infant data and the reliability of functional networks early in
development.

Classification and generalization of behavioral
state
Given the within versus across state differences observed above,
we hypothesized that it should be possible to decode infant behav-
ioral state from patterns of functional connectivity using multi-
variate classification (Lewis-Peacock and Norman 2014). We first
attempted to decode behavioral state within group based on
whole-brain patterns of functional connectivity (Fig. 2A). Indeed,
we could robustly decode infant state (sleep vs. movie: M = 91.33%
vs. 50%, P <0.001) and adult state (rest vs. movie: M = 93.33%,
P <0.001; Fig. S5). There was no significant difference between
infant state decoding accuracy and adult state decoding accu-
racy (P = 0.718). To unpack these whole-brain results, we next
attempted to decode behavioral state in each group at the level
of networks (Fig. 2B). For both infants and adults, behavioral state
was encoded throughout the brain, with functional connectivity
varying by state within and across most pairs of networks. These
results persisted if rather than subsampling participants to bal-
ance training examples we instead used a stratification approach
that retained the original distribution of participants (Fig. S6).

This evidence that behavioral state can be decoded within both
infants and adults, and in similar networks, leaves open a ques-
tion about whether the same connectivity features encode state
information in each group. If so, the parcel–parcel connection
weights learned by the state classifier in one group should enable
decoding of state in the other group (Fig. 2C). We first trained a
classifier to distinguish rest versus movie in adults and tested
whether it could generalize to distinguish sleep versus movie in
infants (where rest and sleep were coded as the same class). This
adult classifier was able to decode infant state reasonably well
(M = 63.00% vs. 50%, P <0.001). Surprisingly, however, general-
ization worked even better in the opposite direction: A classifier
trained to distinguish sleep versus movie in infants robustly
decoded rest versus movie in adults (M = 74.56%, P <0.001). This
difference between the 2 classifiers in terms of generalization
was statistically significant (P <0.001). We again performed a
network-level analysis to gain a better understanding of where

this generalization occurs in the brain (Fig. 2D). Although adult-
to-infant generalization occurred in many network connections,
infant-to-adult generalization was much stronger, particularly in
visual-ventral attention connections and ventral attention within
network connections.

One interpretation of this asymmetry is that the connectivity
features most useful for decoding infant state are represented in
the adult brain, but that they are not the most useful features
for adult decoding and thus are not weighted heavily enough in
the adult classifier to allow their detection when tested on infant
data. This bias toward adult features could have resulted from our
use of an adult atlas for parcellation. However, when the analyses
were repeated using an atlas based on neonatal functional con-
nectivity (Scheinost et al. 2016), both within-age group decoding
in infants and generalization from adults to infants remained
unchanged (Fig. S7). Interestingly, within-age group decoding in
adults and generalization from infants to adults decreased sig-
nificantly when using an infant atlas compared to the adult atlas.
This suggests that the asymmetry in decoding generalization does
not result from the use of an adult atlas per se, but rather reflects
a difference in the features of connectivity that are most useful
for decoding within adults and infants.

Functional network similarity between infants
and adults
Infants and adults showed a comparable range of functional
network similarity values within and across states in their own
age group. Furthermore, some state-related features of functional
connectivity were shared between infants and adults in the clas-
sifier generalization analyses. Here we test the similarity of infant
and adult functional networks in more detail. We conducted a
similar analysis to Fig. 1, except that this time we compared
functional connectivity similarity across age groups. In particular,
we correlated the functional connectivity matrix of an infant in
either the sleep or movie state with the average of all adult runs
in either the rest or movie state.

Infants in both states had moderately similar functional con-
nectivity to adults (Fig. 3A), with no main effect of infant state
(mean difference in infant sleep vs. infant movie: M = 0.046, CI
= [-0.027, 0.067], P = 0.404). However, there was a main effect
of adult state on similarity to infants (mean difference in adult
rest vs. adult movie: M = -0.241, CI = [-0.280, -0.186], P <0.001).
Follow-up tests revealed that, regardless of infant state, infants
were more similar to adults watching a movie than adults resting
(infant sleep to adult rest vs. infant sleep to adult movie: M
= -0.106, P <0.001; infant movie to adult rest vs. infant movie
to adult movie: M = -0.127, P <0.001; infant sleep to adult rest
vs. infant movie to adult movie: M = -0.107, P <0.001; infant
movie to adult rest vs. infant sleep to adult movie: M = -0.127, P
<0.001). In other words, infant functional networks during sleep
or movie better resemble adults performing a naturalistic viewing
task than adults fixating a cross while resting. We did not find
a significant interaction between infant state and adult state
(M = -0.028, CI = [-0.071, 0.027], P = 0.424). There was no difference
between infant sleep (M = 0.351) and infant movie (M = 0.330)
in similarity to adult rest (difference M = 0.021, P = 0.258), nor a
difference between infant sleep (M = 0.457) and infant movie (M =
0.458) in similarity to adult movie (difference M = -0.000, P = 0.938).
Importantly, although motion was higher for infants watching a
movie compared with sleeping, average framewise displacement
did not relate to similarity to adults for any comparison (Fig. S8).

The analyses above aggregated across all infants we tested.
However, these infants ranged from 3 to 33 mo old, spanning
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Fig. 2. Classification and generalization of behavioral state based on FC. (A) Significant decoding of states across the whole brain within age groups
compared to chance (0.5). Error bars represent variability across 10 folds. (B) This was reflected in significant state decoding within and across pairs of
networks (P <0.05, uncorrected), with darker cells indicating larger effects, and white dots denoting cells that survived Holms–Bonferroni correction.
(C) Although infant state could be decoded with the adult classifier, adult state was decoded much more robustly with the infant classifier. (D) Repeating
this analysis for networks revealed some generalization from adults to infants, but more robust and widespread generalization from infants to adults.
∗∗∗ P <0.001.

substantial developmental changes. We therefore performed an
exploratory analysis of how similarity to adults changed with
infant age (Fig. 3B). When compared with adult rest, the correla-
tion between infant age and infant-adult similarity of functional
connectivity did not reach significance for infant sleep (r = -0.441,
CI = [-0.732, 0.236], P = 0.184) or infant movie (r = 0.237, CI =
[-0.004, 0.504], P = 0.052). When compared with adult movie, there
was again no significant correlation with age for infant sleep (r =
-0.377, CI = [-0.707, 0.458], P = 0.280) or infant movie (r = 0.051, CI
= [-0.224, 0.338], P = 0.716). Thus, there was no clear evidence of
infant age-related differences in similarity to adults, though this
question would be better addressed with a larger sample size and
more uniform coverage of the age range.

Network connections responsible for infant
similarity to adult movie-watching
Our prior analysis showed a large main effect of adult state on
similarity between infants and adults, with both sleeping and
movie infants showing more similar functional connectivity to
adults watching movies versus resting. To interpret this effect,
we used a pointwise product approach to assess which parcel
connections made a relatively larger contribution to this simi-
larity. Averaging across infant sleep and movie states, the top

connections responsible for similarity to adults were largely the
same connections for adult rest and adult movie states. These
connections were mainly between parcels labeled with the same
network, particularly in the visual network and default-mode
network (Fig. 4A). To determine which connections contributed
more to average infant similarity with adult movie compared
with adult rest, we subtracted the average normalized pointwise
product values of these 2 comparisons and visualized the top
1% of connections that contributed more to one comparison over
another. We then calculated the significance of these differences
at the network level with bootstrap resampling (Fig. 4B). Whereas
similarity between infants and adult rest was driven more by
within-network connections, similarity between infants and adult
movie was driven more by connections between the visual net-
work and other networks. This suggests that showing a movie
revealed visual system interactions across the adult brain that are
also present in the infant brain.

Modulation of network connections driving adult
similarity by infant state
The results so far show comparable overall levels of similarity
between infant and adult functional connectivity for both sleep
and movie infant states. However, which network connections
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Fig. 3. FC similarity between infants and adults. (A) Intersubject similarity values from correlating the upper triangle of an individual infant FC matrix
with the upper triangle of the average adult FC matrix for different combinations of infant and adult states. The dots represent individual run data and
error bars reflect 95% bootstrap confidence intervals. (B) Relationship between infant age and similarity to adults across the different comparisons. The
shaded region signifies the 95% confidence interval for the line of best fit. ∗∗∗ P <0.001.

are responsible for this overall adult similarity could differ by
infant state. We again performed a normalized pointwise product
analysis to test for differences in contributions to adult similarity
between infant sleep and infant movie states. Compared with
adult rest (Fig. 5A), infant sleep similarity was driven by visual
connections with other networks, whereas infant movie similarity
was driven by ventral attention, dorsal attention, and control
within-network connections; dorsal attention connections with
other networks (ventral attention and somatomotor); and control
connections with other networks (dorsal attention and visual).
This infant state-dependent reorganization of network structure
similarity to adult rest persisted in the comparison with adult
movie (Fig. 5B). Similarity between infant sleep and adult movie
was driven by visual-dorsal attention network connections,
default-ventral attention connections, and control-somatomotor
connections, whereas similarity between infant movie and adult
movie was driven by control within-network connections and
control connections to other networks (dorsal attention and
visual). These results were replicated when we used a “lesioning”
approach, removing network connections one at a time and
assessing their impact on connectivity measures (Fig. S9). Thus,
while infant state does not impact overall functional connectivity
similarity to adults, it meaningfully changes which networks are
more adult-like.

Discussion
Motivated by the fact that almost all infant fMRI research to date
has been conducted during sleep, this study fills a gap in the lit-
erature by examining functional brain networks in awake infants.
As in adults, we found that whole-brain functional connectivity
in infants differed between sleep and movie states. These states
could be reliably decoded in held-out data within and across

groups. A surprising asymmetry in across-group generalization
suggests that infant state differences in functional connectiv-
ity are preserved in adults, but that the strongest indicators
of adult state are not as relevant in infancy. Overall similarity
with adult functional connectivity was comparable in both infant
states (and stronger when adults watched movies vs. rested),
but different networks contributed more or less to the over-
all level of similarity depending on state. These results show
that infant sleep/movie states modulate functional brain net-
works, highlighting the importance of considering infant behav-
ioral state when assessing functional brain development relative
to adults.

Differences in functional networks between rest and task are
well-documented in adults and older children (Lynch et al. 2018,
Finn and Bandettini 2021, Sanchez-Alonso et al. 2021), but much
less is known about how functional networks differ between
infants who are asleep (as is most common in the literature;
Zhang et al. 2019) versus awake and engaging in a task (Nielsen
et al. 2023). In fact, one might predict that functional networks
would not differ between infant sleep/wake states, given that
infants have different sleep patterns and stages than adults
(Roffwarg et al. 1966, Knoop et al. 2021, Lokhandwala and Spencer
2022) and the networks involved in adult sleep emerge over
development (Giedd and Rapoport 2010, Blumberg et al. 2014,
Cirelli and Tononi 2015, Sydnor et al. 2021, Hu et al. 2022a).
However, recent work has shown that functional networks as
measured with EEG differ between quiet and active sleep in
neonates (Tokariev et al. 2019) and are more strongly coupled and
less clustered during sleep than wake in 6-mo-old infants (Smith
et al. 2021). Here, we show that infants have more similar patterns
of functional connectivity within the sleep state and within the
movie state than across these states, and that these patterns can
be decoded robustly by a classifier. Our results expand on previous
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Fig. 4. Contributions of individual network connections to infant-adult similarity, as assessed by normalized pointwise products. (A) Circos plots showing
the top 1% of connections that contributed to the similarity between all infants and adult rest, and between all infants and adult movie. (B) Differences
in the contribution of network connections to infant similarity with adult rest versus adult movie. Circos plots show the top 1% of differences. Matrices
indicate which network connections contributed significantly more to infant similarity with adult rest and adult movie at P <0.05, uncorrected, with
darker cells indicating larger effects. The white dots indicate which network connections survived Holms–Bonferroni correction.

findings in 2 ways: by (1) using fMRI, the dominant method to
identify networks across the whole brain including away from the
cortical surface; and (2) using movies in the awake state, because
it will be necessary for future awake infant fMRI studies to employ
engaging stimuli to reduce head motion and ensure compliance
for more than a few seconds.

We did not find evidence for higher similarity between infants
and adults in the awake state. Instead, infant functional networks
were equally similar to adult functional networks regardless of
sleep/movie state. This suggests that infant consciousness might
not impact overall measures of functional network maturity,
which validates previous studies that compared functional
networks between sleeping infants and awake adults and bodes
well for large-scale data collection efforts relying on sleeping
fMRI data until early childhood (Fitzgibbon et al. 2020, Eyre
et al. 2021, Volkow et al. 2021). Nevertheless, network-level
analyses revealed modulation by infant state of which networks
are most similar to adults, with connections between visual
and dorsal attention networks among the strongest in infant
sleep and connections within frontoparietal control network
among the strongest in infant movie. These results are important
because they mean that the functional maturity of certain
networks may be underestimated in infant sleep data alone—
particularly the frontoparietal control network, which is often
characterized as one of the slowest developing networks in
infancy (Gao et al. 2017, Zhang et al. 2019, Hu et al. 2022b).
Whether this is true in general or an artifact of sleep data will

now require further investigation and data collection in awake
infants.

Interestingly, infant functional networks were more similar
to adults watching movies than to adults in a resting state,
even when the infants were asleep. We do not think that this
can be attributed to differences in noise between adult rest
and adult movie, as functional networks were equally similar
across participants in these states. As shown in Fig. 1, functional
connectivity during adult rest consisted of stronger between-
network connections than during adult movie, reflecting high
integration (Bassett and Sporns 2017). Although previous work
has shown greater between-network connections during tasks
compared with rest, this is not always the case for movies
(Gonzalez-Castillo and Bandettini 2018). Resembling adult movie,
infants in both sleep and movie states showed weaker between-
network connections, reflecting functional segregation. This
observation may help explain the lower generalization from
adults to infants in our multivariate decoding results: A classifier
trained to distinguish adult rest and movie that then encounters
infant data may choose the label “movie” more often if relying on
features of network segregation. Thus, although some features
relevant to state decoding may be preserved across development,
those most heavily weighted in adults may not be applicable to
infants. This result, which indicates that there are shared neural
features between infants and adults despite a different neural
pattern overall, fits with our prior work showing that infant
neural event patterns during movie-watching are reflected in the
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Fig. 5. Contributions of individual network connections to infant–adult similarity dependent on infant state, as assessed by normalized pointwise product
values. Circos plots show the top 1% of connections that contributed more to the labeled comparison. Matrices indicate which network connections
contributed significantly more in that comparison (P <0.05, uncorrected), with darker cells indicating larger effects. The white dots indicate which
network connections survived Holms–Bonferroni correction. (A) Contributions of network connections to similarity with adult rest for infant sleep and
infant movie. (B) Contributions of network connections to similarity with adult movie for infant sleep and infant movie.

adult brain, despite differences in optimal neural event timescales
(Yates et al. 2022).

We used movies as a comparison with sleep for this study
because they are rich, activate multiple networks across the
brain, and are highly engaging to infants. Nonetheless, infant-
adult network similarity may differ in awake rest or other tasks,
such as those that tax attention or have an auditory component.
Indeed, this is a key motivation of this research: the nature and
kind of the functional networks identified in infants will likely
depend on the state of the infant during data collection. In future
work, it will be important to investigate the reorganization of
functional networks within (Yin et al. 2020) and across tasks in
infants. These investigations will inform whether different states
(such as movie-watching and rest) operate along a continuum in
a common state space, or are instead qualitatively different and
should be considered separately. We also did not find evidence
of age-related changes in the similarity of functional networks
between infants and adults in the current study. fMRI activity syn-
chronizes across infants (and adults) watching the same movie
(Yates et al. 2022), so this may not be the optimal task for charac-
terizing individual differences. At the same time, infant functional
connectivity during sleep yields identification rates (i.e. the ability
to correctly match an individual’s functional connectivity pattern
to themselves) that are moderate within-session (Wang et al.
2021) and poor across sessions (Dufford et al. 2021; though see

King et al. 2023 for discussion of methodological confounds in
infant connectome fingerprinting). Thus, as the field of awake
infant fMRI grows, it will be important to converge on the best
task(s) for constructing reliable, yet individually identifiable func-
tional networks.

As with all awake infant fMRI, this study has several limita-
tions. First, the sample size was small, limiting the generalizability
of our findings and our ability to estimate effect sizes. Moreover,
because of the small sample size, we were unable to consider the
impacts of other factors on functional connectivity, such as scan-
ner site or movie content. Our hope is that this study nevertheless
highlights some of the ways in which infant state may impact
functional connectivity. This could help guide future studies with
larger samples, perhaps in combination with the data we have
shared from this study. Second, the amount of data used for
calculating functional connectivity per participant was also small
(around 4 min), especially when compared with current recom-
mendations (Birn et al. 2013, Noble et al. 2019). Given the difficulty
of collecting fMRI data from infants, especially in the awake state,
this amount of data is near the limits of what is practical. However,
the small amount of data likely influenced power and reliability.
Indeed, longer functional acquisitions in infants can reveal more
adult-like functional connectivity (Sylvester et al. 2023). Nonethe-
less, a recent study found that the ability to identify infants based
on their functional connectivity plateaus between 2.5 and 3.5 min
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of data (Wang et al. 2021), and we found similar results to our main
analysis when analyzing only runs with at least 2.9 min of usable
data (Figs. S3 and S4). Additionally, although we used rigorous
inclusion criteria, our motion threshold was liberal relative to
prior sleeping studies. Importantly, infants and adults did not
differ in the number of usable datapoints, average framewise
displacement in infants did not predict similarity in functional
connectivity to adults, and our main results held when we used
a stricter motion threshold even on the awake data. Nonetheless,
the exclusion rate was much higher for infant movie runs (34/87
runs included) than for infant sleep runs (20/21 included), also
reflected in significantly greater motion during awake movie-
watching than during sleep on average. Given that motion hurts
measurement of functional connectivity (Power et al. 2012, Sat-
terthwaite et al. 2012, Van Dijk et al. 2012), our results may
underestimate the impact of infants being awake (vs. asleep) on
functional networks.

Another limitation is that we treated adult rest and infant sleep
as equivalent, despite known differences between rest and sleep
in adults (Tagliazucchi and Laufs 2014). Comparisons between
infant movie and adult movie are better matched. In future work,
it will be important to compare awake and sleeping infants with
sleeping adults to fully understand sleep/wake differences across
age groups. Characterizing sleep stages through simultaneous
fMRI-EEG (Poppe et al. 2021) would also allow for a more fine-
grained analysis of infant functional networks across different
states. Finally, our main analyses relied on an adult functional
parcellation atlas (Schaefer et al. 2018) which may or may not
be appropriate for the infant brain. Data-driven approaches for
defining regions and networks (e.g. independent components
analysis, graph theory; Fair et al. 2021) have been instrumental
in the field of developmental neuroimaging but would require
more within-participant data than we had available. Infant
atlases have also been created (Scheinost et al. 2016, Oishi et al.
2019, Wang et al. 2023), although their use may complicate
comparisons with adults, for which they are inappropriate.
Indeed, although state decoding in infants was similar using
either an adult or infant atlas, state decoding in adults was
lower when using an infant atlas (Fig. S7). This infant atlas
had a similar number of parcels as the adult atlas, and thus
it remains to be explored how the granularity of parcellation
into more (e.g. Shen et al. 2013, Glasser et al. 2016, Gordon
et al. 2016) or fewer (e.g. Harvard-Oxford; Desikan et al. 2006)
regions and connections impacts the similarity of functional
connectivity between infants and adults. A related issue is the
suitability of adult network labels in the infant brain. In fact, the
reduced clustering along the diagonal of the connectivity matrices
depicted in Fig. 1A suggests that adult network labels may not
fully capture the structure of infant functional connectivity.
Even if the network structure was more similar, caution would
still be warranted when using adult network labels in infants.
For example, infant regions in the anatomical vicinity of the
adult frontoparietal control network contributed more to adult
similarity when infants were awake, but we do not yet know the
functions of these regions in infants and whether they match
the functions in adults (e.g. executive control; Dosenbach et al.
2006). In fact, we previously showed that attention engages frontal
cortex in infancy, but not as much parietal cortex (Ellis et al.
2021).

In conclusion, infants show distinctive functional network pro-
files during movie and sleep states that result in comparable
overall similarity to adults driven by different networks. This
highlights the added value of awake fMRI, in complement to

more ubiquitous sleeping fMRI, for understanding early brain
development.
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