Statistical Learning and Its Consequences

Nicholas B. Turk-Browne

Abstract Statistical learning refers to an unconscious cognitive process in which
repeated patterns, or regularities, are extracted from the sensory environment. In
this chapter, T describe what is currently known about statistical learning. First, I
classify types of regularities that exist in the visual environment. Second, I introduce
a family of experimental paradigms that have been used to study statistical learning
in the laboratory. Third, I review a series of behavioral and functional neuroimaging
studies that seek to uncover the underlying nature of statistical learning. Finally, I
consider ways in which statistical learning may be important for perception, attention,
and visual search. The goals of this chapter are thus to highlight the prevalence
of regularities, to explain how they are extracted by the mind and brain, and to
suggest that the resulting knowledge has widespread consequences for other aspects
of cognition.
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Introduction

Human behavior is often geared towards one ohject at a time, as in picking up a
coffee mug, recognizing a friend’s face, or noticing a car’s age. This fact is even
more apparent in visual search, where we typically seek one target object among
other distracting objects: looking for my coffee mug among many others in the office
lounge; trying to track down a particular friend at a cocktail party; or, searching for
my car in an airport parking garage. How we succeed (and fail) in these kinds of
searches is the topic of the 59th Nebraska Symposium, including critical factors
such as attention, memory, reward, and real-world complexities. The purpose of this
chapter is to highlight another important factor in visual search, ‘statistical learning’.
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Although the goal of visual search is to find a target object, we rarely need to
start from scratch. Rather, we can use knowledge about when and where this object
appears relative to other objects to find what we're looking for. In the searches above,
for example, T may know from prior experience that my coffee mug sits on top of
a shelf rather than floating in air; that my friend hangs out with certain people who
may also be at the party; and, that I tend to park near the elevator in parking garages.
Indeed, we repeatedly come across the same people, places, and things, and over
time they tend to appear in similar spatial configurations and temporal sequences.
Statistical learning is an unconscious process by which we extract these patterns (or
‘regularities’) in how objects appear relative to each other in the visual environment.

Statistical Regularities in the Visual Environment

Regularities are aspects of the environment that repeat over time, such as the fact that
beaches tend to look the same, that football players tend to appear on football fields, or
that my office is across the street from a pharmacy and an ice cream shop. These regu-
larities can be roughly classified along two dimensions: the timescale of learning (the
interval over which learning happens), and the domain of knowledge (what kind of
information is learned). Three varieties of regularities that differ on these dimensions
are reviewed below: (1) regularities that have molded the visual system over evolu-
tionary time and extensive training to basic physical properties of the environment
(‘physical regularities’), (2) regularities that are acquired throughout the lifespan
about kinds of objects grouped as visual concepts/categories (‘semantic regularities’),
and (3) regularities that are learned in minutes about happenstance relationships be-
tween particular features and objects (‘token regularities’). The boundaries between
these types are inherently fuzzy, and the separation below is not intended to reify
strict distinctions. Rather, this separation is used rhetorically to provide intuitions
about the prevalence of regularities in many aspects of perception.

Physical Regularities

The natural environment has been stable for a long time, and so the range of input
received by the visual system is constrained. For example, natural landscapes have
horizontal but not vertical horizons, and natural light comes from above but not below.
Over phylogenetic time, our brains have adapted to such regularities: if a large set
of natural images is decomposed into independent basis functions with a constraint
on efficient coding, the resulting components match the receptive field properties
of V1 neurons (Olshausen and Field 1996). In other words, the visual system has
been tuned during evolution to the statistics of the natural world (Simoncelli and
Olshausen 2001).
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Beyond regularities in the general appearance of natural images, there are also
physical constraints on how objects in the world interact. For example, objects move
continuously through space and time, objects only rest on horizontal surfaces un-
less affixed, and objects ‘touch’ their shadows only where they rest on the obscured
surface. These and other constraints may be built into the visual system, as evi-
denced by studies of infant cognition. For example, 3—4 month old infants know that
objects continue to exist after being occluded and cannot pass through each other
(Baillargeon 1987). While present early on, knowledge of physical regularities be-
comes more sophisticated throughout development, growing from knowledge about
simple occlusion to, for example, knowledge about containment and transparency
(Baillargeon 2008).

Along with changes over phylogenetic time, extensive experience with specific
input can alter the visual system over ontogenetic time. For example, repeated sub-
liminal exposure to one direction of motion improves the detection threshold for that
direction but not other directions (Watanabe et al. 2001). Such ‘perceptual learning’
reflects long-lasting changes in visual cortex, including enlarged and refined repre-
sentations of trained stimuli (Goldstone 1998; Fahle and Poggio 2002; Sasaki et al.
2010). This kind of learning may supplement hard-wired general assumptions about
the visual environment (as described above) by further tuning the visual system to
the natural and artificial environments that we inhabit during our lifetime.

Semantic Regularities

In addition to physical properties and object interactions, regularities exist in how
types of objects appear in the visual environment. For example, regardless of color
and shape, all fire hydrants appear on sidewalks not on top of mailboxes, and all
toilets appear in bathrooms and not kitchens. The visual system relies on these
canonical locations and scene contexts for object recognition, such that objects vi-
olating semantic regularities are recognized more poorly (Palmer 1975; Biederman
et al. 1982; Davenport and Potter 2004; cf. Hollingworth and Henderson 1998). In
addition, there are semantic regularities in terms of whether and how objects can
change over time. For example, stoplights can change color but stop signs can’t, and
humans can move locations but not shrink in size (at least not quickly). These kinds
of regularities influence visual awareness: improbable object changes have a higher
incidence of change blindness (Beck et al. 2004).

The distinction between semantic and physical regularities is not rigid. For exam-
ple, images representing the same scene category (e.g., a beach) have similar global
physical properties. Despite differences in the local details of particular exemplars
(e.g., the number of bathers, color of sand, presence of beach chairs, etc.), such prop-
erties allow us to quickly and effortlessly categorize novel scenes (Oliva and Torralba
2006). However, the objects belonging to a semantic regularity can but need not be
especially physically similar. For example, the exemplars of many categories (e.g.,
buildings, trees, dogs) are physically heterogeneous. More generally, while physical
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properties can denote particular semantic classes, this is just one type of linking cue:
objects may share semantic relations in spite of physical dissimilarity because, for
example, they accomplish a similar function (e.g., microwave and BBQ grill) or are
required components of a broader concept (e.g., the equipment, players, and field in
football).

Token Regularities

In addition to regularities in what semantic types of objects co-occur, the visual
environment is littered with regularities between object fokens. For example, when
learning a new navigation route, the sequence of landmarks that one comes across
is highly regular (e.g., a religious billboard, then a fast food restaurant, then an open
field, etc.). Such regularities can be spatial in addition to temporal. For example,
beyond physical and semantic constraints, there are regularities in the configuration
of objects in each kitchen that are unique with respect to all other kitchens. Finally,
some token regularities are not inherently spatial or temporal, such as sets of faces
that tend to co-occur (e.g., in groups of friends).

There is no necessary semantic relationship between objects in token regularities
(e.g., a billboard and a restaurant, two facial identities), and indeed many such regu-
larities are composed of conceptually distant objects (e.g., the curtains, electronics,
and art in a room). More importantly, semantic classes often provide too coarse a
grain of description (e.g., moving around my living room in the dark or finding a
particular utensil in the kitchen does not benefit much from my general knowledge
of living rooms or kitchens). Token regularities also differ from the kinds of phys-
ical regularities described earlier that persist over very long timescales: particular
sequences and configurations of objects are happenstance and can change frequently.
Moreover, I will emphasize the relational nature of token regularities—that regu-
larities exist in the statistical relationships (e.g., conditional probabilities) between
two or more objects—whereas perceptual learning of physical regularities is often
viewed as imprinting of discrete stimuli (Goldstone 1998). In sum, statistical learn-
ing about token regularities occurs over faster timescales (e.g., when moving to a
new city, or using a new computer operating system) and requires tracking particular
object exemplars rather than semantic classes or physical properties per se.

Studying Statistical Learning

Unlike physical and semantic regularities, which are built into the visval system
or learned over the course of development, token regularities can be introduced and
tested in a laboratory setting. In addition to introducing new regularities, experiments
about statistical learning typically use novel objects without preexisting semantic
associations. Thus, subjects begin de nove when entering these experiments, with
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Fig. 1 Auditory statistical
learning. Subjects are briefly
exposed to a structured
speech stream, and
subsequently express greater
familiarity with words than
part-words and non-words
(see text for details). (Based Test
on Saffran et al, 1996a)

Familiarization

“.tupirobidakugolabutupiropadotigolabu..”

Words Part-words Non-words
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minimal prior knowledge and biases relevant to the regularities (or to the objects from
which they are generated). This experimental control allows us to characterize the op-
eration of statistical learning precisely. Given the space of possible regularities in the
real world, statistical learning is generally studied in an artificial environment con-
taining a small number of relatively simple regularities. Whether these environments
provide a suitable proxy for how statistical learning operates in more naturalistic con-
texis is an important and open question. Later, T will consider evidence that statistical
learning can handle some of the complexities of natural environments,

Where It All Started: Auditory Statistical Learning

This chapter is predominantly focused on visual statistical learning. But the impetus
for current research on visual statistical learning (including the author’s own initial
interest), comes from the study of auditory statistical learning; in particular, from
studies of how auditory statistical learning may be important for word learning and
segmentation in speech streams, and for language acquisition more generally (Saffran
et al. 1996a,b).

In a typical study of this type (Fig. 1; Saffran et al. 1996a), subjects (infants, kids,
or adults) are exposed (o a brief speech stream composed of syllables. Unbeknownst
to subjects, the stream of syllables has been constructed to contain statistical regular-
ities in terms of which syllables follow each other. In particular, the 12 total syllables
(e.g., tu, pi, ro, bi, da, ku, go, la, bu, pa, do, ti) have been assigned to four trisyllabic
‘words’ (e.g., tupiro, bidaku, golabu, padoti), such that the first syllable is always fol-
lowed by the second, and the second always by the third (transitional probabilities of
1.0). What occurs after the third syllable of each word is any of the first syllables from
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the three other words (back-to-back word repetitions are prevented; transitional prob-
abilities of 0.33). Insofar as subjects pick up on the statistical discrepancy between
within- and between-word transitions, they can use the transitional probabilities to
segment the words. Critically, other than the differential transitional probabilities,
there are no prosodic or other cues that would indicate word boundaries.

After only 2min of exposure, 8-month-old infants expressed knowledge of the
words by dishabituating to new words that were composed of the same syllables,
but in combinations with lower (or zero) transitional probabilities based on what
they had heard (Saffran et al. 1996a). While not discussed further here, these results
have been extended significantly to incorporate, among other things, prosody (e.g.,
Thiessen and Salfran 2003), word meaning (e.g., Graf Estes et al. 2007), and multiple
languages (Gebhart et al. 2009).

Temporal Visual Statistical Learning

As highlighted earlier, statistical regularities are ubiquitous in the visual environ-
ment. Regularities exist in both how objects are arrayed in space and how they
appear over time. Tasks have been developed (o study statistical learning in both of
these dimensions. Visual statistical learning about temporal regularities is considered
first, because it is studied in a similar way to auditory statistical learning. Temporal
information in vision arises in one of at least two ways:

First, the world is dynamic and objects move over time. The way that objects move
and change over time contains regularities, such as the trajectory of a tennis ball, the
different views of a car as it passes, or the sequence of movements underlying an
action (Baldwin et al. 2008). These kinds of temporal regularities have an intrinsic
structure or order, and may underlie our representations of events (Avrahami and
Kareev 1994; Zacks and Tversky 2001).

Second, the way that we sample the world (both static and dynamic parts)
guarantees that visual input will be distributed over time. Specifically, we acquire in-
formation about one part of the visual environment at a time through eye movements
and covert shifts of attention. We must continually sample the environment due to
the capacity limitation of visual short-term memory—i.e., the small number of items
that can be held simultaneously in memory and the brief durations of such repre-
sentations (e.g., Henderson and Hollingworth 2003; Zhang and Luck 2009). Objects
captured by each eye fixation or attentional shift receive enhanced processing, such
that scanning creates a parade of objects through the visual system. Temporal regu-
larities of this type may not be inherently ordered or structured, but can exist in terms
of which objects appear in a broader context (e.g., the set of objects in one room}), or
can be driven by the likelihood that two or more objects will be fixated sequentially
(e.g., because of close spatial proximity or similar salience). Thus, temporal regular-
ities are prevalent in vision as well as in audition, due to the existence of inherently
temporal events and actions, and to our serial sampling ol spatial environments.
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Fig. 2 Temporal visual
statistical learning. Subjects
are briefly exposed to a
structured stream of shapes,
and subsequently express
greater familiarity with
triplets than foils (see text for
details). (Based on Fiser and
Aslin 2002)

Familiarization

Studies of temporal visual statistical learning often rely on an experimental design
adapted from the original auditory statistical learning experiments (Fig. 2; Fiser and
Aslin 2002; see also Olson and Chun 2001). A set of novel nonsense shapes (e.g., A,
B,C,D,E,F G, H,1J K, L) is divided without replacement into temporal pairs or
triplets (e.g., ABC, DEF, GHI, JKL). During an initial phase, subjects are exposed
Lo a continuous stream constructed from these triplets, with shapes appearing one at
a time (e.g., DEFJKLABCDEFGHL. . . ). Critically, subjects are not oriented to the
presence of triplets. The shapes can either appear as the only thing on the screen, or
cycle back and forth behind an occluder changing identity each time when occluded.

After several minutes of exposure, subjects are then given a surprise familiarity
test. On each trial they are presented with two three-item sequences: (1) a triplet from
familiarization, and (2) a foil generated from the same shapes but rearranged into
new groupings (e.g., AEIL, DHL, GKC, IBF). Each triplet is tested against each foil, to
ensure equal frequency of the alternatives at test. Thus, triplets can be discriminated
from foils only based on the higher transitional probabilities within triplets vs. within
foils. Subjects perform very well in this task, despite the fact that learning is incidental
and that subjects often express low confidence in their test judgments. Such findings
have been used to suggest that statistical learning happens automatically as a result
of mere exposure to regularities (Saffran et al. 1999; Fiser and Aslin 2002).

Spatial Visual Statistical Learning

Temporal regularities derive partly from repeated sampling of structured spatial en-
vironments. Indeed, objects and their parts do not appear in random locations in
scenes, but rather in predictable locations based on the locations of other objects and
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Fig. 3 Spatial visual cps s .
statistical learning. Subjects Familiarization
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parts (Biederman et al. 1982). These spatial regularities are partly due to physical
constraints (sofas cannot floatin the sky) and partly due to semantic knowledge (hood
fans appear above rather than below stoves). However, additional regularities exist
in the particular configuration of parts and objects. Sensitivity to these regularities
may be important for learning about the composition of novel objects and about the
layout of novel environments. Indeed, space is the dominant dimension in the visual
modality (as time is in the auditory modality; Kubovy 1988), and thus it is important
to characterize how statistical learning operates over spatial regularities.

Studies of spatial visual statistical learning employ a design that is somewhat
different from temporal statistical learning studies. However, at its core, this design
replicates the essential property of temporal statistical learning experiments: that
regularities can only be segmented on the basis of statistics. In other words, much
like the continuous temporal stream from which shape triplets must be extracted, our
visual system is confronted with an undifferentiated spatial image and must segment
the meaningful chunks based solely on spatial probabilities.

In such studies (Fig. 3; Fiser and Aslin 2001; sce also Chun and Jiang 1999),
subjects are presented with simplified visual scenes generated froma3 x 3 grid. Six
shapes are shown in each grid and—unbeknownst to subjects—the shapes appear in
spatial pairs. Specifically, a set of 12 shapes (c.g., A, B, C,D,E,FG,HLIK,L)
is randomly assigned without replacement to six pairs (e.g., AB, CD, EF, GH, IJ,
KL). Two pairs are assigned to each of three orientation types: horizontal (e.g., AB,
CD), vertical (e.g., EF, GH), and diagonal (e.g., IJ, KL). Each scene is generated by
selecting one pair of each orientation (e.g., AB, EF, 1I) and placing them on the grid
so that all shapes are abutted by at least one shape beyond the paired shape. With these
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constraints, a total of 144 grids can be generated. Subjects are briefly presented with
each scene and the entire stream lasts 5 min. Critically, to learn the pairs, subjects
need to extract the joint probabilities between adjacent shapes. To measure learning,
subjects then complete a familiarity test in which they are repeatedly presented with
a pair and a foil (e.g., AD, CB, EH, GF, IL., KJ) and must choose which alternative
is most familiar. Performance at discriminating pairs from [oils 1s excellent in this
task.

A modified design provides a test of which statistics subjects can extract. In the
basic task, joint and conditional probabilities are confounded (pairs have higher
joint and conditional probabilities than foils): i.e., P(AB)=0.5>P(AD)=0 and
P(BIA)=1.0>P(DIA)=0. To examine whether subjects could pick up conditional
probabilities in isolation, Fiser and Aslin (2001) doubled the frequency of a sub-
set of the pairs (e.g., AB, 11) such that the joint probability of two adjacent shapes
that crossed pairs (e.g., BJ) was equal to the joint probability of infrequent original
pairs (e.g., CD). Importantly, these two pair types differed in conditional probability:
P(DIC)=1>PJIB) ~ 0.5. Subjects were still able to successfully discriminate these
pairs, suggesting that they had extracted conditional probabilities. In contrast to joint
probabilities, conditional probabilities may be especially important for prediction
(see "Anticipation’ section).

Aside: Other Related Kinds of Learning

Visual statistical learning as a cognitive process may occur in many lask contexts.
Most prominently, a form of visual statistical learning may underlie contextual cueing
during visual search (Chun and Jiang 1998). In such tasks, subjects are presented
with visual search arrays composed ol a T targel and L distractors. Critically, several
configurations of targets and distractors are repeated during the experiment, and
search performance gets faster and faster as a result of learning. This task provides
an elegant online measure of learning, allowing the timecourse of learning to be
assessed, unlike most statistical learning tasks. However, the spatial regularities in
contextual cueing are qualitatively different from statistical learning: subjects learn
configurations of locations per se, rather than configurations of object identities.
Thus, contextual cueing may help in locating a target during visual search given
the known locations of other objects (cf. Kunar et al. 2007), while spatial statistical
learning results in stimulus-specific knowledge of relative locations (e.g., that A
is above B). Variations on contextual cueing in which the identities of distractors
predict the location and/or identity of the target (Chun and Jiang 1999; Endo and
Takeda 2004) provide a bridge o the spatial statistical learning literature. There are
many other related forms of learning, including in the serial reaction time task where
sequences of spatial locations (rather than object identities) can be readily learned
(e.g., Mayr 1996).
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The Nature of Statistical Learning

Statistical regularities are every where in the world, and evidence of statistical learning
is almost equally ubiquitous. Statistical learning occurs in every sensory modality
in which it has been tested (c.g., Conway and Christiansen 2005), in time and in
space (e.g., Fiser and Aslin 2001, 2002), for many types of stimuli (e.g., Saffran
et al. 1999; Baldwin et al. 2008), and in many subject populations (e.g., Kirkham
et al. 2002; Toro and Trobalén 2005). Statistical learning seems to be a powerful and
fundamental part of cognition. .. but how does it work? Over the past seven years,
my collahorators and I have attempted (o uncover the nature of statistical learning.
Here I review findings from this research program as an update on what is known
about statistical learning.

When Does Learning Take Place?

An important challenge for statistical learning is that the huge set of regularitics we
experience is a small subsct of all possible regularities that could exist. For example,
consider walking through your home airport: you may repeatedly encounter the same
restaurants, ticket agents, and gates, and they can even appear in fixed temporal
orders and spatial layouts; but on any given trip, you encounter many other objects,
such as random tourists, food stands, bestsellers in the bookstore, etc., and these
objects may be gone by your next trip. How do we extract the meaningful and
stable relationships between certain objects, while discounting transient intrusions
from other objects? The problem is one of ‘combinatorial explosion’: to learn about
which relationships are regular, one must in principle represent the co-occurrence
of all possible groupings of objects. In other words, how can statistical learning
determine a priori which relationships will reappear in the future? Indeed, if such
advance knowledge were possible, learning would have already taken place! This
is especially problematic for statistical learning since it occurs in an unsupervised
manner (Fiser and Aslin 2002), without feedback about when and what to learn.

In a series of behavioral studies (Turk-Browne et al. 2005), we explored this is-
sue by examining the automaticity of visual statistical learning. Namely, we asked
whether statistical learning occurs whenever the visual system is confronted with reg-
ularities, or whether selective attention can determine which regularities are learned.
The latter possibility would place an important constraint on when statistical learn-
ing takes place. In our studies, subjects were presented with a temporal stream of
nonsense shapes. This stream was itself composed of two separate streams that had
been interleaved (Fig. 4). Each stream appeared in a different color, and contained
a unique set of shapes. Unbeknownst to subjects, each of the two colored streams
was generated using triplets of shapes as in the standard temporal visual statistical
learning task.

Critically, subjects were instructed to attend to one color of shapes (e.g., green),
and to perform a one-back task cnly for shapes appearing in that color (i.c., detecting
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Fig. 4 Selective attention,
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whether the current green shape was the same as the last green shape). Shapes were
presented one at a time, and were thus all attended spatially. However, only the
attended shapes were task-relevant. Insofar as learning occurs by mere exposure to
regularities (e.g., Saffran et al. 1999), regularities in both streams may be learned. If
selective attention instead gates statistical learning, we would expect better learning
of the attended shapes.

Across five experiments, we not only found better learning of the attended regu-
larities, but no learning whatsoever of the unattended regularities. This was even true
when we used an implicit response time (RT) measure that may be more sensitive
to unattended learning. Thus, selective attention determines the input to statistical
learning. These results were recently used as a case study of how to prove null
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hypotheses (Gallistel 2009)—in our case, the null hypothesis was that ro learning
oceurs without attention (confirmed by way of Bayesian analysis).

While statistical learning of object relationships occurred only when the objects
were tlask-relevant, this learning happened without conscious awareness. Indeed,
statistical learning was robust despite the fact: (1) that subjccts were not informed
about the presence of regularities, (2) that they performed a distracting cover task
(one-back) during familiarization, (3) that the shapes were presented quickly, (4) that
regularities from the two streams were interleaved, adding noise to the transitional
probabilities, and (5) that learning was evident in an implicit RT measure. Moreover,
during careful debriefing in the RT experiment, no subjects expressed awareness of
the structure in the displays. These findings suggest that statistical learning is and is
not automnatic: selective attention to objects is required for their relationships to be
learned, but once this input has been selected, learning takes place without conscious
intent or effort.

Does Task-Relevance Guarantee Learning?

The previous section described evidence that statistical learning is constrained by top-
down selective attention, i.e. that statistical learning only occurs for task-relevant
objects. However, the simple working memory task used in those experiments is
only one of a large number of cognitive tasks that we routinely engage in. Does
statistical learning take place whenever objects are task-relevant, or does the nature
of the task matter? In the latter case, finding that some tasks are betler or worse
for statistical learning may help uncover the component processes at work during
statistical learning.

In a recent behavioral study (Zhao et al. 2011), we examined one particular
kind of task that bears an interesting resemblance to statistical learning: statistical
summary perception. The ability to perceive summary statistics has received much
consideration recently (e.g., Ariely 2001; Chong and Treisman 2003; Alvarez and
Oliva 2008). In statistical summary perception tasks, subjects are presented with a set
of objects, and are instructed to make subsequent judgments about some statistical
property of the set (e.g., mean size). Critically, subjects can often extract summary
statistics from a set of objects without being able to identity the constituent members
of the set (e.g., Ariely 2001; Alvarez and Oliva 2008).

On the surface, statistical learning and statistical summary perception are quite dif-
ferent: statistical learning involves extracting regularities over repeated experience,
while statistical summary perception involves extracting statistics from a single dis-
play; and statistical learning involves acquiring stimulus-specific relationships (ie.
that this particular object co-occurs with another particular object), while statistical
summary perception (by definition) involves representing the general properties of a
collection. Despite these surface differences, however, these Lwo processes are both
inherently statistical: they involve aggregating a sample, and distilling this sample
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Fig. 5 Statistical summary perception. While being exposed to spatial line pairs, different groups
of subjects performed a statistical summary task (Is the mean line orientation fo the left or right
of the vertical meridian?), dual-task control (Are there any duplicate lines?), or passivé viewing.
Statistical learning was blocked by the summary task. (Based on Zhao et al. 2011)

to statistics (e.g.. transitional probability matrix, or mean). Thus, statistical learn-
ing and statistical summary perception may interact in meaningful ways. We tested
what happens to statistical learning when objects are attended during a statistical
summary task.

The design of this study most closely matches a spatial visual statistical learning
task. Subjects were presented with grids of lines (rather than shapes) of different
orientations (Fig. 5). There were eight possible orientations, and unbeknownst to
subjects, the orientations were arranged into four spatial pairs. On each grid, three
of the four pairs were selected and placed such that at least one other pair appeared
ad_liacently. Thus, the only cue to pair structure was the co-occurrence of particular
orientations.

IThe critical manipulation concerned which task subjects performed during fa-
miliarization. One group of subjects was instructed to passively watch the grids, as
has been done in prior studies (Fiser and Aslin 2001). A second group of subjects
performed a statistical summary perception task on the grids: they were instructed
to compute the mean orientation of the lines, and to discriminate this mean as being
to the left or right of the vertical meridian. A third group of subjects performed a
control task to ensure that differences between the passive viewing and statistical
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summary tasks could not be attributed to merely needing to perform a second task
(which could perhaps enhance attention in a generic way). The control task group
determined whether each grid contained a duplicate line. The displays were identical
in all conditions, and thus any consequences of the three tasks must reflect the impact
of different task sets on statistical learning.

Statistical learning was robust in the passive viewing and control task condi-
tions, but was weaker—actually, non-existent—in the summary task condition. This
suggests that computing summary statistics may interfere with statistical learning,
possibly because of a reliance on shared statistical computations, or because of a re-
liance on different spatial scales of attention. That s, global attention helps summary
performance (Chong and Treisman 2005), while local attention may be necessary for
stimulus-specific learning. In any event, these results provide a further constraint on
when statistical learning takes place, and suggest an unforeseen connection between
two varieties of statistical processing that had been studied separately.

Aside: The Quest for a Great Cover Task

The findings presented so far demonstrate that what you are doing determines whether
you will learn. This fact shows the importance of an often-overlooked methodolog-
ical aspect of studies on statistical learning: the task that subjects perform during
familiarization. The earliest studies of statistical learning employed no task at all
during familiarization (Saffran et al. 1996b; Fiser and Aslin 2001, 2002). Passive
listening or viewing is not without merit: as we have already seen, certain tasks may
be detrimental to statistical learning (Zhao et al. 2011). At the same time, anybody
who has run a statistical learning experiment with passive viewing knows the inher-
ent awkwardness in asking subjects to “simply watch”. Subjects seem puzzled by
such instructions (“how can I do nothing™), and often suspect that the experimenter
has ulterior motives. This may lead subjects to implement idiosyncratic strategies in
searching out the meaning behind the displays. While such searches rarely turn up
the true structure, they may nevertheless be detrimental to learning. In other words,
not giving subjects a task does not mean that they won't impose their own task, and,
without careful debriefing, such tasks are unknowable and uncontrolled from the
experimenter’s perspective.

By analogy, the study of functional conn ectivity in the brain is typically conducted
while subjects rest in a functional magnetic resonance imaging (fIMRI) scanner with
no task (Fox and Raichle 2007). Because no task has been imposed, it is assumed
that any resulting patterns of brain activity reflect the stable intrinsic functional
architecture of the brain. Yet, recent tasks seep into resting state brain activity (e.g.,
Stevens et al. 2010), suggesting that subjects are not performing no task (or a default
task), just that the experimenters typically do not know what it is.

Thus, a certain amount of experimental control is gained by asking subjects to
perform a task during familiarization. Tt is worth clarifying that such tasks are never
to learn the structure of the display (i.e., intentional learning). Not only would this
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kind of explicit task violate the unsupervised spirit of statistical learning, intentional
learning tasks are not always beneficial to learning: in a classic artificial gram-
mar learning study, intentional learning instructions hurt learning (Reber 1976).
Instead, tasks during familiarization can be considered ‘cover’ tasks in that they do
not themselves disclose the presence of regularities.

When designing studies of statistical learning for which the nature of the cover
task does not matler per se, one often simply wants to ensure that statistical learning
takes place. From many successful and unsuccessful experiments, it seems that
the most conducive tasks to learning are those that emphasize the identity of the
objects being perceived. For example, the interleaved one-back task described above
requires maintaining each shape in working memory, and judging whether the next
shape has the same identity. Other tasks that emphasize object identity work well
too as shown below, such as detecting motion jitter (requires some shape processing
to resolve motion correspondence) and classifying objects into semantic categories,
Tasks that do not require any object recognition are less conducive to learning, such
as requiring detection of fixation luminance changes. Whether particular tasks are
conducive (boost statistical learning with respect to some baseline) or permissive
(prevent the blocking of learning that other intrinsic tasks might cause) remains to
be further clarified. However, the big picture of why some tasks are good and others
are bad has more than methodological implications: humans may be able to control
when statistical learning takes place simply by engaging in certain behaviors, without
even realizing that they possess this power.

What Happens During Learning?

Conventional statistical learning designs all have something in commeon: they require
two parts. In particular, statistical learning occurs during the first part (familiariza-
tion), and then is tested in the second part (test). A separate test is needed because
of the canonical use of passive viewing during familiarization. The test is often a
two-alternative forced choice familiarity task in which subjects must discriminate
between a regularity from familiarization and a foil constructed from the same el-
ements arranged inlo a new sequence or configuration. While this kind of test has
been used successfully in many studies (including many of our own), this design has
two drawbacks: First, supposedly incidental and unconscious statistical learning is
being tested with an explicit familiarity judgment. While familiarity can be informed
by implicit processes, a familiarity test may not be the most sensitive measure of
implicit learning. Second, testing learning after the fact means that information about
what happens during learning (e.g., about the timecourse of learning) is lost. Indeed,
by using two parts, one makes assumptions about how much exposure is needed for
learning since familiarization must end before the test can begin—familiarity cannot
be measured at multiple intervals, since this would explicitly cue subjects to the
presence of regularities.
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Fig.6 Neural evidence. Subjects were exposed (o blocks of glyphs constructed from triplets or from
otherwise matched but random sequences, Both the caudate and posterior hippocampus responded
more strongly to structured blocks, providing evidence of statistical learning after only a handful
of triplet repetitions. (Based on Turk-Browne et al. 2009)

To resolve these issues, we conducted an fMRI study of what happens in the brain
during familiarization (Turk-Browne et al. 2009). We sought to answer three ques-
tions about the process of statistical learning in this study: What is the relationship
between statistical learning and other forms of learning? How efficient is statistical
learning? What is the relationship between our online measure of statistical learning
in the brain and subsequent familiarity? Using fMRI, we monitored changes in the
brain related to statistical learning without requiring an online behavioral measure
(e.g., Hunt and Aslin 2001), and perhaps before these changes manifest in behavior.

Subjects were presented with blocks of nonsense glyphs from ancient alphabets,
where each block contained 12 glyphs (Fig. 6). Their task was to detect whenever
one of the glyphs jiggled on the screen (a subtle horizontal motion). The blocks
alternated between two sets of 12 unique glyphs. One of the sets, which was used to
generale the Structured blocks, was composed of four triplets of glyphs. In generating
each Structured block, the triplets were randomly sequenced in an order that had never
previously been scen. The glyphs appeared sequentially, one at a time, and thus
triplets could only be discriminated based on the higher transitional probabilities
for glyphs within vs. between triplets. As a comparison, the other set of glyphs,
which was used to generate the Random blocks, was composed of three ‘position
sets’. Namely, four of the glyphs could appear in the same serial position as the first
item in each triplet, four other glyphs could appear in the same serial position as the
second item in each triplet, etc. Other than these constraints, the order of glyphs was
randomized in each Random block. The overall block sequence alternated between
Structured and Random blocks, and we contrasted neural responses to the two block
types as a measure of learning. The Structured and Random blocks were identical in
terms of item frequency and serial position frequency, and thus any neural differences
must reflect sensilivity to the stronger transitional probabilities within triplets in the
Structured blocks.
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We were especially interested in whether statistical learning would engage well-
known memory systems involved in other types of learning. Two systems of particular
interest included the medial temporal lobe and the striatum. The medial temporal
lobe, and the hippocampus in particular, is the primary brain system for declarative
memory (Cohen and Eichenbaum 1993), and has been implicated in some implicit
forms of relational (Ryan et al. 2000), configural (Chun and Phelps 1999), and
sequence learning (Schendan et al. 2003), which may all be related to statistical
learning. The striatum, and the caudalte in particular, is often linked to non-declarative
or procedural learning, and has been implicated in many forms of implicit learning,
including category learning (Seger and Cincotta 2005), artificial grammar learning
(Licberman et al. 2004), and motor sequence learning (Toni et al. 1998). After a
few minutes of exposure, the hippocampus and caudate responded more strongly to
the Structured blocks than to the Random blocks. These findings suggest potlential
connections between statistical learning and other forms of learning and memory.
We are actively exploring the role of the MTL in statistical learning, for example,
examining whether representations in MTL cortex are tuned based on regularities
(see Miyashita 1993),

To examine the timecourse of learning, we explored when the difference between
Structured and Random blocks emerged during learning using smaller windows
of time. In the caudate and hippocampus, as well as other regions, we found ini-
tial evidence that statistical learning can occur very quickly, after only 2-3 triplet
repetitions. To examine the relationship between this neural evidence of statistical
learning and the conventional familiarity measure used in previous studies, we re-
peated our analyses including only those subjects who performed at or below chance
on the familiarity test. Despite not exhibiting any statistical learning by conventional
standards, the caudate in these subjects nevertheless discriminated Structured vs.
Random blocks. This result suggests that neural evidence of statistical learning can
exist without explicit familiarity, perhaps preceding behavioral expressions of learn-
ing. In sum, this study uncovered some of the dynamics of learning and identified
the neural systems involved.

How Does Learning Handle Real-World Complexity?

We have so far considered when statistical learning takes place and what happens
during statistical learning. In this and the next section, 1 describe what is represented
in memory as a result of statistical learning. This question becomes salient when we
consider the types of real-world objects over which statistical learning operates. In
contrast to the monochromatic shapes used in the prior studies, real-world objects
are complex, or ‘multidimensional’. For example, an object can have many features,
including color, texture, and shape, and these features can vary over the different parts
of an object. How does statistical learning scale up to more complex stimuli? More
specifically, when confronted with regularities of complex objects such as colorful
shapes, whal is learned: patterns of bound objects (e.g., sequences or configurations
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of shape-color conjunctions) or patterns ol the constituent features (¢.g., sequences
or configurations of shapes or colors)? The answer is not obvious. On one hand,
objects provide a strong organizing system for features, and object-based effects
have been observed in many domains (e.g., Luck and Vogel 1997; Scholl 2001). On
the other hand, some features are not stable over time (e.g., luminance, shadows)
and thus learning over conjunctions may be inefficient.

We examined these issues in a series of behavioral studies that looked at statistical
learning for multidimensional objects (Turk-Browne et al. 2005). In a temporal vi-
sual statistical learning task, subjects were shown a continuous stream of shape-color
objects (Fig. 7). Each of twelve shapes was assigned a unique color, and these shape-
color conjunctions were grouped into four triplets without subjects’ knowledge. To
examine whether statistical learning operates over bound objects or separated [ea-
tures, we used a transfer logic: if triplets of bound objects are learned, then familiarity
for object triplets should be high at test and familiarity for triplets of the separated
shape or color features should be low. Instead, if triplets of separated features are
learned, then familiarity for the feature triplets should be robust. The result was that
statistical learning extracted the regularities between objects: familiarity was much
higher for triplets of bound objects than for triplets of separated features, or even
triplets created at test from new combinations of feature triplets.
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We further hypothesized that non-diagnostic features should be discounted in
learning about objects. For example, certain objects have cancnical colors (e.g.,
fruits and vegetables) while others do not {e.g., furniture, books, hats). We examined
whether feature triplets would be better learned when combined into an object with
variable or non-diagnostic features from another dimension. We assigned two shape
triplets to have fixed and unique colors (as before), and the remaining two shape
triplets to appear in randomized colors. Statistical learning now occurred for the shape
triplets that were paired with variable colors. Surprisingly, the shape triplets paired
with fixed colors were also now better learned, as were the color triplets that appeared
with these shape triplets. These findings suggest that the general covariance between
feature dimensions determines whether statistical learning outputs knowledge about
object or feature regularities: when covariance is high, regularities are learned at
the level of objects; when covariance is low, regularities are learned at the level of
features.

Another way to think about these results is that statistical learning may always be
object-based, but that feature diagnosticity determines what counts as an object: when
colors are diagnostic of shapes (and vice versa), objects consist of both a shape and
color; when colors are not diagnostic of shapes, objects consist of a single shape or
color leature. This interpretation suggests that statistical learning can operate within
objects—in addition to between objects—extracting relationships between features
(and feature dimensions) to determine which conjunctions are reliable. An object-
based bias, coupled with a sensitivity to feature covariance, may allow statistical
learning to operate in natural contexts containing regularities among complex objects.

How Flexible Is Learning?

The research above raises a broader question: after learning regularities, how flexi-
ble are the acquired representations to changes in the appearance of objects and/or
their relationships? In other words, what kinds of changes in the environment can
be tolerated when expressing knowledge about regularities? One type of change
that has already been discussed is color: we found that statistical learning of col-
ored shapes can be expressed despite the removal of color, but only when colors
are non-diagnostic. Another common type of change relates not to the features of
individual objects, but rather to the spatiotemporal patterns in which multiple objects
appear. Indeed, the visual environment is highly dynamic, meaning that sequences
and configurations change over time. For example, the set of people we encounter
at the office is relatively stable, but the particular sequence and locations in which
we encounter them may vary from day to day. Moreover, because a major source
of temporal information in vision comes from eye movements, changes in how we
fixate in a given environment (e.g., entering through the back door of a house in-
stead of the front door) will lead to very different sequences. If statistical learning
is highly specific to the spatiotemporal details of experience (e.g., Jiang and Song
2005), such variability would be disastrous to the expression of learning. Indeed,
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given the inherent variability of the world, statistical learning may not be of much
use if it cannot cope with some changes between when regularities are acquired and
expressed.

We examined these issues in a series of behavioral studies (Turk-Browne and
Scholl 2009) where changes were made between the famniliarization and test phases of
visual statistical learning tasks. Specifically, we examined the flexibility of statistical
learning (i.e., generalization) using a similar ‘transfer’ logic to above: if statistical
learning can be expressed despite some change at test, then the changed aspect of
the displays is not an integral part of the learned knowledge.

We first examined whether statistical learning could be expressed at test for triplets
that appeared in a new temporal order. Subjects watched a continuous stream con-
taining four triplets in the familiarization phase. We then tested whether temporal
order was an important part of what they had learned by including both the orig-
inal (forwards) triplets and, on other trials, reversed (backwards) versions of the
same triplets. Insofar as temporal visual statistical learning can generalize across
temporal order, subjects should exhibit some familiarity with the backwards triplets.
Surprisingly, they expressed equally strong familiarity with the forwards and back-
wards triplets. This suggests that the knowledge generated by statistical learning is
invariant to order.

Since forwards and backwards triplets elicited the same amount of familiarity,
were they even distinguishable? Was all order information lost? To test this, we
ran an additional study in which subjects were asked (o discriminate forwards vs.
backwards triplets directly (rather than forwards and backwards triplets vs. non-
word foils). Subjects now expressed greater familiarity with forward triplets. These
results suggest that statistical learning generalizes across temporal order when order
is not needed to discriminate triplets vs. foils, but that this information is represented
nonetheless and can be accessed when necessary (when two alternatives can only be
discriminated based on order).

Since temporal order information was easily discarded during statistical learning,
we then tested whether temporal information was necessary at all for learning to be
expressed at test. Following the standard temporal statistical learning task, subjects
were tested on triplets vs. foils, but now the objects in the triplets were presented
simultaneously in a spatial configuration (Fig. 8). If statistical learning can generalize
over the time dimension entirely, subjects should be able to discriminate spatial
triplets vs. foils. This is what we found, even when the test displays were presented
too quickly for eye movements. These results suggest that temporal visual statistical
learning may be useful in building up spatial representations.

Finally, we also examined the flexibility of spatial visual statistical learning. We
asked whether learning of spatial pairs would transfer to temporal displays, just like
temporal triplets transferred to spatial displays. Saving the details for a little later,
the basic result was that spatial learning led to temporal processing benefits. These
findings suggest that statistical learning produces knowledge that can be applied
flexibly in new contexts. In sum, the studies reported in this section show the power
of statistical learning, and its fit to the constraints and properties of the natural
environment.

.
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Consequences of Statistical Learning

What is statistical learning good for? Many of the studies discussed thus far have
relied on familiarity as a measure of statistical learning. Does statistical learning
only result in increased familiarity with regularities? This seems somewhat epiphe-
n.()m.e‘nal, in the sense that fleeting familiarity signals may not have much functional
significance for ongoing behavior. In this section, | present three other possible
consequences of statistical learning, and consider how they might relate (o visual
scarch. While there has not been much research specifically testing how statistical
1carnn.1g and visual search interact, the results presented here suggest that such an
investigation could be fruitful.

Anticipation

Ope potential consequence of statistical learning that is often emphasized in the ap-
plication of statistical learning to language is ‘segmentation’—the use of regularities
tg parse the world into meaningful lexical units or chunks (Giroux and Rey 2009).
Similar approaches have been used to model visual statistical learning (Orban et al.




138 N. B. Turk-Browne

2008). However, both familiarity and segmentation are retrospective, requiring en-
tire patterns to be experienced before they can occur. That is, the relevant kind of
familiarity and the ability to place a boundary occur only after an entire regularity has
been perceived. Indeed, a hallmark of chunking models is that chunks are indivisible
into their component parts (Orbdn et al. 2008). Such rigidity may help us recognize
higher-order chunks, such as scenes, events, and words, but 18 not well suited to the
dynamic nature of perception. We have thus become interested in whether statistical
learning can be used prospectively.

In a recent IMRI study (Turk-Browne et al. 2010), we examined what happens at
the beginning of temporal regularities—can the brain use knowledge of regularities to
anticipate upcoming, predictable objects? For example, imagine repeatedly meeting
a particular host when entering a restaurant before being led into the dining room;
over time, does perceiving the host’s face trigger automatic anticipation of the layout
and content of the dining room? In other words, can we rely on learned regularitics
to live with one foot in the perceptual future? Such anticipation could have important
consequences for perception, allowing us to more quickly recognize objects and cope
with occluded or degraded visual input.

Subjects in our study were presented with a continuous stream of face and scene
images, appearing one at a time and separated by a jittered inter-trial interval (for
fMRI analysis purposes). Subjects’ task was to decide for each image whether it
depicted a face or a scene. Unbeknownst to subjects, eight of the 12 images in each
scanning run were divided into four cross-category pairs: two face — scene pairs
and two scene — face pairs, The remaining four images (two faces, two scenes) were
unpaired, and served as a baseline. We were interested in three conditions: the First
image in each of the pairs, the Second image in each of the pairs, and the Unpaired
images. Insofar as slatistical learning affords anticipation, we predicted that: (a) First
images would elicit anticipatory responses compared to Unpaired images, and (b) this
anticipation would lead to facilitated processing of Second images.

This latter prediction was apparent in RTs: subjects were faster to categorize the
Second vs. Unpaired images, suggesting that the First image had caused priming.
Such associative priming effects, resulting {rom statistical learning, have been ob-
served in two of our other studies as well (Turk-Browne et al. 2005; Turk-Browne
and Scholl 2009). In both of these cases, the task on each trial required detecting
a pre-specified target embedded in a rapid serial visual presentation stream. We
manipulated where the target object appeared with respect to preceding items. For
example, in studying whether spatial visual statistical learning transfers to the tem-
poral dimension, the target object was sometimes preceded by the object that it was
paired with in space during familiarization and sometimes by an equally familiar foil
object. RTs were faster when the target was preceded by its spatial pair, providing
evidence that spatial learning can produce temporal cueing benefits. Such effects
of statistical learning on object detection and discrimination highlight an important
behavioral consequence of statistical learning for object recognition.

Back to the fMRI study of anticipation. Interestingly, RTs to the First images
were slower than to Unpaired images. We interpreted this as evidence of anticipation:
when perceiving an object that affords predictions about what will come next, this
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Fig. 9 Implicit perceptual anticipation. Objects that are predictive-of what will appear next in the
trial sequence produced robust hippocampal activity (not shown). Faces, which otherwise do not
activate the scene-selective PPA (see Unpaired condition), elicited enhanced PPA responses when
they predicted a scene, and suppressed PPA responses when they could be predicted as non-scenes.
(Based on Turk-Browne et al. 2010)

predictive response may act as an implicit dual task and interfere with the current
task of categorizing the image in front of you. We are following up on this effect,
to determine whether it reflects a generic cost of anticipation (i.e., that performance
is slowed whenever anticipation is possible), or prospective response conflict (i.e.,
that the response for the anticipated image interfered with the required response for
the current image). The current study was equivocal: because pairs always contained
objects of different categories (for reasons to be described shortly), the response to
the First image always conflicted with the response to the anticipated Second image.

Along with these behavioral results, we observed a robust and selective [IMRI
response in the right hippocampus to the First images compared to the Unpaired
images. It is worth emphasizing that First and Unpaired images are identical in all
respects but one: they are presented an equal number of times and neither image type
is itself predictable based on which image came before; but critically, First images
are predictive and allow anticipation of the Second images, while Unpaired images
afford no such predictions. Surprisingly, the hippocampal response was evident after
fewer than six repetitions of each pair, again providing evidence for the remarkable
speed of statistical learning. Finally, although the hippocampus has been traditionally
linked to declarative or explicit forms of memory (Cohen and Eichenbaum 1993),
subjects reported no awareness that pairs even existed in the stream, suggesting that
these anticipatory eftects reflect implicit perceptual anticipation.

We were especially interested in whether implicit perceptual anticipation could
influence visual cortex; in particular, whether regularities could be exploited Lo
potentiate visual processing (Fig. 9). To examine this possibility, we localized
category-selective parts of ventral temporal cortex that responded selectively to faces
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and scenes. If regularities can modulate the visual system, then faces that are pre-
dictive of scenes may prospectively elicit scene-related activity (and vice versa).
Indeed, scene-selective cortex (the parahippocampal place area, PPA; Aguirre el al.
1998; Epstein and Kanwisher 1998) provides a clean test of this hypothesis since it
does not otherwise respond to faces. This can be seen in the response of the PPA to
Unpaired faces, which was slightly below baseline. Critically, First faces, which re-
liably predicted that a particular scene would appear next, elicited an enhanced PPA
response. Along with this enhancement, the PPA response to Second faces, which
were predictable as non-scencs, was suppressed. These findings provide evidence
that anticipation based on statistical regularities can prospectively alter visual cortex.

The idea that statistical learning can prime the detection and recognition of pre-
dictable or probable objects may have important consequences for visual search.
Indeed, search is speeded when the configuration or identities of distractors pre-
dict the identity of the target during visual search (Chun and Jiang 1999; Endo and
Takeda 2004). Such effects may result from an effect of regularities on biased com-
petition (Desimone and Duncan 1995), whereby perceiving one object may prioritize
processing for associated objects. A related alternative is that regularities could tran-
siently increase familiarity for associated objects, with increased target familiarity
leading to more efficient search (Flowers and Lohr 1985).

Relatedly, semantic regularities influence visual search by guiding eye movements
(o locations in scenes where the target is semantically licensed or probable (Hen-
derson et al. 1999: Neider and Zelinsky 2006; Torralba et al. 2006). For example,
receiving a scene preview without a search target facilitates subsequent search when
the target is introduced, ostensibly because the scene context in the preview could
be leveraged Lo restrict search to likely target locations (Hollingworth 2009). The
brain seems keen on generating predictions, and if those predictions are grounded in
regularities, searching for a target object may be aided by perceiving and exploiting
associated distractors,

Shifting Modes of Attention

The efficiency of visual scarch depends on the extra time needed (o find a target item
for each additional distractor added to a search set, quantified as the slope of RT as a
function of set size. Efficiency varies a lot depending on the nature of the target and
distractors (Wolfe 2001). Search is most efficient (shallow slopes) when the target
differs from all distractors in terms of the presence of one simple feature (Treisman
and Gelade 1980). Such targets may be detected pre-attentively, reflecting parallel
processing of all items in the display—a ‘distributed mode’ of attention (Chong and
Treisman 2005). In contrast, search is least efficient (steep slopes) when the larget
and distractors share features, and the target is defined by the conjunction of features
(Duncan and Humphreys 1989). Such targets require serial processing of each item
in the display—a ‘focused mode’ of attention (Treisman and Souther 1985). Search
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Fig. 10 Regularities and summary perception. Subjects performed a summary task (judging the
mean line orientation) over grids that contained spatial regularities (Structured) vs. grids that were
otherwise matched but did not contain spatial regularities (Random). Summary perception improved
when regularities were removed. (Based on Zhao et al. 2011)

efficiency is thus better when a target can be found with distributed attention, and
worse when focused attention is required.

The need for distributed vs. focused attention during visual search is typically
attributed to properties of targets and distractors. However, statistical regularities
themselves may also control whether attention can be allocated in a distributed or
focused manner. Specifically, we are exploring the hypothesis that regularities among
local objects draw attention into a more focused mode. While current evidence for
this hypothesis is sparse, the idea grew out of a recent behavioral study (Zhao et al.
2011). In that study, we examined how statistical summary perception, a process
that depends on disiributed attention (Chong and Treisman 2003), is affected by
statistical learning. This is the counterpart to an experiment reported earlier on the
reverse—how statistical learning is affected by statistical summary perception. The
study is described below before I return to the question of how regularities affect
attention.

Subjects were presented with grids of lines, and judged whether the mean line
orientation was to the left or right of the vertical meridian (Fig. 10). One group of
subjects (Structured) received grids that contained spatial pairs. Another group of
subjects (Random) received the same grids, but where the locations of lines were
shuffied on each trial to destroy the spatial regularities. We predicted that the mere
presence of regularities might prompt the visual system to attempt to learn, which
may in turn interfere with summary perception. This is exactly what we found:
Judgments of mean line orientation were less accurate in the Structured condition.

We conducted a follow-up study to verify that statistical learning per se was
interfering with summary perception, and not that it was more difficult to summarize
the Structured vs. Random displays because they differed in some unintended way. In
this new study, one group of subjects was pre-exposed to Structured displays during
the duplicate detection control task described earlier (allowing for pre-learning of the
line pairs), while another group performed the control task over Random displays
(resulting in the same item familiarity, but no knowledge of the line pairs). Both
groups then performed the summary task over Structured displays. The group that

.
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had pre-learned the pairs gave more accurale summary judgments than the group
that was being exposed to the pairs for the first time, presumably because the latter
group was engaged in statistical learning while the former group was not. Critically,
the displays were identical during this phase, eliminating the possibility of stimulus
differences, and supporting the claim that statistical learning interferes with summary
perception.

Given that distributed attention is necessary for summary perception (Chong and
Treisman 2003), one interpretation of our results is that regularities (even if not
learned successfully) shift attention to a focused mode. There are other potential
interpretations too, such as that statistical learning and summary perception rely on
shared statistical computations, and that engaging in one process interferes with the
other by blocking necessary resources. [t will therefore be important for future exper-
iments to test the idea that local regularities attract focused attention. Nevertheless,
these findings demonstrate that statistical learning can have costs for other cogni-
tive processes, along with the benefits for familiarity, segmentation, and anticipation
described earlier.

Biasing Locations in Space

In typical visual search tasks, the target location on any given trial is random. When
target locations are not random, search performance improves. For example, when
target location is predictable from past experience with a specific configuration of
distractors, the target can be found more quickly (e.g., Chun and Jiang 1998). More-
over, independently of distractor locations, the probability of targets appearing in
specific locations also influences search. For example, when targets appear in one
general location on 75 % of trials, target discrimination is facilitated at that location
and inhibited at others (Geng and Behrmann 2005; see also Umemoto et al. 2010).

All of these findings suggest that regularities in the locations of targets and dis-
tractors can improve search by biasing the allocation of spatial attention. Besides
regularities related to the search task, statistical learning may also independently
bias the allocation of spatial attention in a way that could influence search. For
example, the presence of statistical regularities at one location may draw spatial at-
tention. Consider the natural environment: at any given moment, we are confronted
with too many potential sources of regularities and must decide what to learn. We
have previously seen that top-down or goal-directed attention to a subset of visual
input limits statistical learning to that input. Without such task goals, however, how
does the visual system decide what to learn? One possibility is that, like many ba-
sic visual cues (e.g., abrupt onsets), regularities themselves act as a cue for spatial
attention. Indeed, we have obtained preliminary support for this possibility: targets
are detected more quickly when they appear at a spatial location containing temporal
regularities, even when the identity, timing, and location of the target are orthogonal
to the regularities (Zhao et al., in press).
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Another way that statistical learning could influence attention is after learning
has occurred: knowing the structure at one location may allow us to divert limited
atientional and working memory resources elsewhere in space. We have tested this
possibility in a recent study (Al-Aidroos and Turk-Browne, in prep). Subjects first
completed a temporal visual statistical learning task in which shapes were presented
one at a time al central fixation and subjects detected one-back repetitions. In one
condition, the stream was constructed from triplets; in the other condition, the stream
was randomized. After some initial exposure to the stream, subjects were instrucled
to continue detecting repetitions, but also to determine the orientation of rare low-
contrast Gabor probes that appeared in the periphery. Probe discrimination was more
accurate when the probes were presented during the triplet vs. random streams.
Having acquired the triplets during the initial exposure, subjects may have been
released from the burden of statistical learning at fixation and better able (o monitor
the peripheral locations where probes appeared. Statistical learning can thus have
diverse effects on spatial attention, and as a consequence, affect other processes that
are modulated by attention.

Conclusions

The purpose of this chapter was to describe where regularities exist in the visual envi-
ronment, to consider ways of studying how regularities are learned, o review recent
studies about when statistical learning occurs, what happens during learning, and
what is represented as a result, and finally to consider some potential consequences
of statistical learning. All of this research highlights the reciprocal connection be-
tween perception and memory: statistical learning is an important mechanism for
recording visual experience into memory; in turn, learned regularities influence on-
going perception, whether it be object recognition, statistical summary perception,
or spatial attention. Given our robust ability to extract and use regularities from the
visual environment, statistical learning may play a broad and [undamental role in
many cognitive processes, including visual search.
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