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Abstract

■ We encounter the same people, places, and objects in pre-
dictable sequences and configurations. Humans efficiently learn
these regularities via statistical learning. Importantly, statistical
learning creates knowledge not only of specific regularities but
also of regularities that apply more generally across related
experiences (i.e., across members of a category). Prior evidence
for different levels of learning comes from post-exposure
behavioral tests, leaving open the question of whether more
abstract regularities are detected online during initial exposure.
We address this question by measuring neural entrainment in
intracranial recordings. Neurosurgical patients viewed a stream
of photographs with regularities at one of two levels: In the
exemplar-level structured condition, the same photographs
appeared repeatedly in pairs. In the category-level structured
condition, the photographs were trial-unique but their

categories were paired across repetitions. In a baseline random
condition, the same photographs repeated but in a scrambled
order. We measured entrainment at the frequency of individual
photographs, which was expected in all conditions, but critically
also at half that frequency—the rate at which to-be-learned
pairs appeared in the two structured (but not random) condi-
tions. Entrainment to both exemplar and category pairs
emerged within minutes throughout visual cortex and in frontal
and temporal regions. Many electrode contacts were sensitive
to only one level of structure, but a significant number encoded
both levels. These findings suggest that the brain spontaneously
uncovers category-level regularities during statistical learning,
providing insight into the brain’s unsupervised mechanisms
for building flexible and robust knowledge that generalizes
across input variation and conceptual hierarchies. ■

INTRODUCTION

Everyday experience is highly structured, and humans can
learn this structure via a process known as statistical learn-
ing (Sherman, Graves, & Turk-Browne, 2020). This knowl-
edge in turn lets us generate predictions and behave more
efficiently when we encounter familiar environments in
the future. For example, after repeatedly shopping at your
local grocery store, you know where your favorite brands
are located, when the shelves are stocked, and whether
you need to bag your own groceries, all of which makes
shopping smoother than in an unfamiliar store. At the
same time, beyond the specifics of your local grocery
store, many features of your experience reflect general
properties of grocery shopping that generalize to most
or all other stores, including that aisles are organized by
food type, that the check-out counters tend to be at the
front of the store, and so forth, meaning that experienced
shoppers can still efficiently navigate even in a new store.

Prior behavioral studies have shown that statistical
learning supports this kind of generalization across idio-
syncratic experiences or exemplars ( Jung, Walther, &
Finn, 2021; Jun & Chong, 2018; Luo & Zhao, 2018;

Emberson & Rubinstein, 2016; Otsuka, Nishiyama,
Nakahara, & Kawaguchi, 2013; Brady & Oliva, 2008). A
common design in such studies is to expose participants
to a sequence of images with regularities at the category
level (e.g., images of beaches always followed by images
of canyons); this differs from standard studies of statistical
learning in which the regularities exist at the level of
particular exemplar images that repeat in pairs or triplets.
Evidence for category-level statistical learning has been
assessed offline in a behavioral test after sequence expo-
sure. For example, participants might be asked to rate
the familiarity of a category pair to which they were
exposed (e.g., beach → canyon) versus a foil (e.g., beach
→ farm, where farm was a category in another pair). The
categories in these test items are often represented by
novel exemplars or category labels, such that they can only
be discriminated if the participants learned categorical
regularities that they can generalize to these novel stimuli.
These prior studies usefully demonstrated that statisti-

cal learning can occur across levels of abstraction, but the
use of offline tests limits insight into the learning process
itself. Specifically, it is unclear how and when participants
detect these regularities at the category level, and critically
whether this occurs during learning at all. An alternative
explanation is that participants only learn the specific,
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exemplar-level regularities to which they were exposed,
and then at test generalize these regularities to novel
exemplars or labels through analogy or inference. For
example, if exposed to a pair of exemplars during learning
(e.g., beach1 → canyon1), participants may exhibit
familiarity or discrimination for new exemplars of the
same categories at test (e.g., beach2 → canyon2) either
(1) because they had already learned a general category
relation online during exposure that is ready to be applied
at test or (2) because no category-level learning occurred
in advance and they instead retrieve specific learned pairs
at test and infer that the right answer will preserve the
same category relation. This theoretical distinction of
whether inference occurs during encoding or retrieval has
been examined in other forms of learning and memory
(Zhou, Singh, Tandoc, & Schapiro, 2023; Preston &
Eichenbaum, 2013). A prior study from our laboratory
provided some tentative behavioral evidence that
category-level statistical learningmight occur online, during
exposure (Sherman & Turk-Browne, 2020), which
prompted us to conduct a targeted study tomeasure online
learning of category-level regularities directly.
For this purpose, we adopted a technique known as

neural entrainment (or frequency tagging) that has found
recent success in tracking statistical learning of auditory
and visual regularities (Henin et al., 2021; Batterink,
2020; Choi, Batterink, Black, Paller, & Werker, 2020;
Batterink & Paller, 2017; Ding, Melloni, Zhang, Tian, &
Poeppel, 2016). This EEG-based method capitalizes on
the fact that brain oscillations in sensory regions can
exhibit phase locking, or entrainment, at the frequency
of onset of rhythmic stimuli (Bauer, Debener, & Nobre,
2020; Norcia, Appelbaum, Ales, Cottereau, & Rossion,
2015). The presence of such entrainment can be used to
detect whether and where in the brain the stimuli are
processed, including when multiple stimuli are presented
at different frequencies (De Rosa, Ktori, Vidal, Bottini, &
Crepaldi, 2022; Ding et al., 2016; Störmer & Alvarez,
2014; Nozaradan, Peretz, Missal, & Mouraux, 2011).
Indeed, statistical learning studies have found neural
entrainment not only at the frequency of individual
stimuli but also to the frequency of learned groupings
of multiple stimuli (Henin et al., 2021), despite no explicit
segmentation cues indicating these groupings.
For example, in a visual stream in which certain scenes

follow each other with high transition probability consti-
tuting pairs, neural entrainment is expected at the fre-
quency of individual scenes, reflecting visual-evoked
responses, but also at half of that frequency reflecting
the rate of learned pairs. Critically, this provides a measure
of learning because the pairs only exist in theminds of par-
ticipants who extracted them based on statistical regulari-
ties across repetitions (again, there is no explicit timing,
instruction, or other cue in the stimuli about the existence
of pairs). Because entrainment to learned regularities is
measured incidentally while participants are passively
exposed to the stream, this method provides a continuous

online measure of statistical learning not readily available
in behavior. Beyond being a sensitive online measure of
learning, neural entrainment can also provide mechanistic
insight into the learning process. For example, it can help
elucidate the timecourse of statistical learning by quantify-
ing how much exposure is required for entrainment to
emerge. Moreover, with the higher spatial resolution
and coverage of deep-brain structures provided by intra-
cranial EEG (iEEG), it is also possible to localize statistical
learning effects in the brain.

Prior studies of statistical learning with neural entrain-
ment employed stimuli that were identical across repeti-
tions, leaving open the question of whether category-level
statistical learning occurs online. Thus, we combine, for
the first time, the method of neural entrainment as an
onlinemeasure with a task design optimized for evaluating
statistical learning over category exemplars. This task
builds on our recent iEEG study that conflated regularities
at the exemplar and category levels (Sherman et al., 2022).
Here, we evaluate these two levels of abstraction sepa-
rately in distinct conditions (relative to a random baseline
condition), allowing us to quantify neural entrainment
online during exemplar-level and category-level statistical
learning.

Across task runs, we manipulated the nature of regular-
ities in a sequence of scene images (Figure 1): In category-
level structured runs, each image appeared once such that
regularities could exist only at the level of categories (e.g.,
Category A → Category B); this differed from exemplar-
level structured runs with repeating images that contained
regularities at the level of individual exemplars (e.g., Scene
A→ Scene B). Both of these structured runs with regular-
ities were compared with a random run in which images
repeated without any regularities in their temporal order.
Patients were not informed about these different condi-
tions or about the presence of regularities, and they
learned them incidentally through passive exposure. By
capitalizing on the spatial and temporal resolution of iEEG,
we tracked statistical learning of exemplar and category
regularities across the brain, providing insight into how,
when, and where learning occurs across levels of abstrac-
tion. We focused primarily on neural entrainment in visual
cortex, given prior work demonstrating strong entrain-
ment in sensory regions (e.g., Sherman et al., 2022; Henin
et al., 2021). However, in exploratory analyses, we also
capitalized on the broad coverage afforded by iEEG, as
several brain regions have been implicated in the learning
and representation of statistical regularities (Henin et al.,
2021; Karuza et al., 2013; Turk-Browne, Scholl, Chun, &
Johnson, 2009).

METHODS

Participants

We tested eight patients (one woman; age range: 21–61
years; mean age = 37.8 years) who had been surgically
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implanted with intracranial electrodes for localization of
seizure onset zone (see Table 1 for patient demographics
and details on implant). This sample size was chosen a
priori based on Sherman et al. (2022). Two patients were
tested a second time (2 days later) because their first data

set was found to be unusable: One of these patients expe-
rienced severe eye irritation during the first testing ses-
sion, and there was a technical error with the triggers for
the other patient. Electrode placement was determined
solely by the clinical care team to localize seizure foci.
Patients were recruited through the Yale Comprehensive
Epilepsy Center and provided informed consent in a man-
ner approved by the Yale University Human Subjects Com-
mittee. All data were collected at Yale NewHavenHospital.

iEEG Recordings

EEG data were recorded on a NATUS NeuroWorks EEG
recording system. Data were collected at a sampling rate
of 4096 Hz. Signals were referenced to an electrode cho-
sen by the clinical team tominimize noise in the recording.
To synchronize EEG signals with the experimental task, a
custom-configured data acquisition system was used to
convert signals from the research computer to 8-bit “trig-
gers” that were inserted into a separate digital channel.

iEEG Preprocessing

iEEG preprocessing was carried out in FieldTrip (Oostenveld,
Fries, Maris, & Schoffelen, 2011). A notch filter was applied
to remove 60-Hz line noise. No rereferencing was applied.

Figure 1. Task design and experimental conditions. Participants viewed a rapid stream of scene images (left), with varying levels of temporal
structure (right). In the category-level structured condition (top), participants encountered a series of trial-unique scene images, drawn from six
scene categories. Scene categories were temporally paired (three pairs of two categories), such that an image from one category (e.g., beach) was
always followed by an image from another category (e.g., canyon). In the exemplar-level structured condition (middle), participants encountered six
scene images that appeared in temporal pairs. In the random control condition (bottom), participants again encountered six (novel) scene images
but now in a random temporal order without pairs.

Table 1. Patient Demographics and Electrode Placement

Patient Information

ID
Age,
years Sex nContacts

Implant
Type Hemisphere

1 28 M 217 Combined Primarily right

2 21 M 119 Combined Left

3 33 M 191 Combined Primarily right

4 34 M 116 Combined Right

5 58 M 182 Combined Primarily left

6 44 M 168 Combined Left

7 61 F 155 Depth Bilateral

8 23 M 162 Depth Left

Implant type indicates whether the implanted electrodes were only
depth electrodes (depth) or a combination of depth electrodes and
grid/strip electrodes on the cortical surface (combined). Hemisphere
indicates the cerebral hemisphere into which the electrodes were
implanted (see also Figure 2).
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Data were downsampled to 256 Hz and segmented into
trials using the triggers.

Electrode Localization

Electrode contact locations were identified using post-
operative CT and MRI scans. Reconstructions were
completed in BioImage Suite (Papademetris et al., 2006)
and were subsequently registered to the patient’s pre-
operativeMRI scan, resulting in contact locationsprojected
into the patient’s pre-operative space. The resulting files
were converted from the Bioimagesuite format (.MGRID)
into native space coordinates using FieldTrip functions.
The coordinates were then used to create a mask in FMRIB
Software Library (FSL; Jenkinson, Beckmann, Behrens,
Woolrich, & Smith, 2012), with the coordinates of each con-
tact occupying one voxel in the mask (Figure 2).
Given prior evidence for entrainment in sensory

regions,wewere interested inmeasuring neural responses
in visual regions.We constructed a broad visual cortex ROI,
as in Sherman et al. (2022), on the Montreal Neurological
Institute (MNI) T1 2-mm standard brain by combining the
occipital lobe ROI from the MNI Structural Atlas and the
following ROIs from the Harvard–Oxford Cortical Struc-
tural Atlas: inferior temporal gyrus (temporo-ocipital part),

lateral occipital cortex (superior division), lateral occipital
cortex (inferior division), intracalcarine cortex, cuneal cor-
tex, parahippocampal gyrus (posterior division), lingual
gyrus, temporal occipital fusiform cortex, occipital fusi-
form gyrus, supracalcarine cortex, and occipital pole. Each
ROI was thresholded at 10% and then concatenated to
create a single mask of visual cortex.

To localize contacts, we registered each patient’s pre-
operative anatomical scan to the MNI T1 2-mm standard
brain template using linear registration (FSL FLIRT;
Jenkinson, Bannister, Brady, & Smith, 2002; Jenkinson
& Smith, 2001) with 12 degrees of freedom. We then
used this registration matrix to transform each electrode
mask into standard space. We overlaid the electrode
masks onto the visual cortex ROI and onto the
Harvard–Oxford cortical and subcortical structural atlases
(maximum probability, 0 threshold). All but one of the
patients had contacts in the visual cortex ROI, resulting
in a final sample size of seven participants for analyses of
visual cortex.

Stimuli

Task stimuli consisted of 720 unique scene images drawn
from 18 distinct outdoor scene subcategories (amphitheater,

Figure 2. Electrode coverage for each patient. Each dot represents a single contact depicted on a standard glass brain. Contacts could be localized to
the visual cortex ROI (purple shaded region) in seven of the eight patients, as indicated by darker black dots.
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amusement park, beach, bridge, canyon, desert, farm, for-
est, garden, highway, lake, lighthouse, marsh, mountain,
park, sports field, town square, and waterfall; 40 images
per subcategory). Six subcategories were randomly
assigned to each of the exemplar-level structured,
category-level structured, and random conditions (see
below); this randomization was performed independently
for each participant. All images were collected from
Google image searches and were cropped to a resolution
of 600 × 800 pixels. Stimuli were presented using
MATLAB (The Math Works) with the Psychophysics tool-
box (Brainard, 1997; Pelli, 1997).

Procedure

Participants completed the experiment on a laptop while
seated in their hospital bed. The task consisted of at least
one run of each of the three experimental conditions. Dur-
ing each run, participants passively viewed a rapid stream
of scene images and were asked to pay attention to each
image. To enable entrainment-based neural analyses, the
SOA was fixed at 500 msec; each scene was presented for
250 msec, followed by a 250-msec ISI, during which a fix-
ation cross appeared in the center of the screen. Each run
sequence was 240 trials in length (2 min of viewing time).

The category-level structured runs were our key runs of
interest, in which we probed online learning of categorical
regularities. Participants viewed a sequence of trial-unique
scene images drawn from six scene categories. To increase
categorical processing of the scenes, patients were told in
advance that they would be viewing images of scene cate-
gories and were given the names of the six categories.
Importantly, they were not informed about the specific
category pairs nor even that the sequence contained pairs
or a predictable order. Unbeknownst to them, the six cat-
egories were assigned to three statistical pairs, such that a
scene from one category (Category A) was always followed
by a scene from its paired category (Category B; Figure 1,
top right). Critically, these pairs existed only at the cate-
gory level because exemplars never repeated, requiring
that patients generalize across exemplars to learn the reg-
ularities. No pair was allowed to repeat back-to-back in the
sequence. In total, participants viewed 40 exemplars from
each scene category once (40 repetitions of each category
pair).

The exemplar-level structured runs served as a key com-
parison, enabling us to examine statistical learning of stim-
ulus regularities without need for generalization across
instances, as in prior studies (Henin et al., 2021; Batterink
& Paller, 2017). In this run, participants viewed a sequence
containing multiple repetitions of six scene images, one
each from six categories that did not overlap with the
other conditions. Unbeknownst to them, the scenes were
assigned to three statistical pairs (e.g., Scene A→ Scene B;
Figure 1, middle right). No pair was allowed to repeat
back-to-back in the sequence. Each exemplar/pair was
repeated 40 times throughout the sequence.

The random control runs served as our baseline condi-
tion, in which we did not expect any learning-related neural
entrainment. As in the exemplar-level structured runs, par-
ticipants viewed a sequence containing 40 repetitions of six
scene images from six non-overlapping categories. In con-
trast to the two structured conditions, the scenes were pre-
sented in a random order without reliable pairs that could
be learned (Figure 1, bottom right). No individual scenewas
allowed to repeat within two images in the sequence. In nei-
ther the exemplar-level structured nor random runs were
participants given the names of individual scenes or scene
categories in advance because these conditions contained
only six exemplars that repeated multiple times.
Prior work has demonstrated that the order of statistical

learning tasks can impact performance. Namely, learning
is worse when one set of regularities is shown after another
set or after randomness (Gebhart, Aslin, & Newport, 2009;
Jungé, Scholl, & Chun, 2007). Thus, to maximize our
chance of detecting category-level neural entrainment,
should it exist, especially given unexpected complications
and interruptions in working with hospitalized patients,
we tested the category-level structured condition first. We
attempted to complete two of these runs back-to-back
with the same sequence. When two runs were obtained
(6 of 8 patients), we included data from both runs in all
analyses. However, we also performed control analyses
with only the first run, to equate the amount of data
across conditions. After the category-level structured
run(s), we completed one run of the exemplar-level struc-
tured and random conditions next, counterbalancing
order across participants. We decided on this semifixed
condition order (category-level structured first) ahead of
time, accepting that it could complicate comparison
between conditions. However, note that each condition
contains a positive control of neural entrainment to the
individual image frequency, allowing us to assess data
quality and ensure that conditions tested later in the ses-
sion did not suffer from fatigue or inattention.

Neural Entrainment Analyses

We conducted a phase coherence analysis to identify
which electrode contacts entrained to our task. We exam-
ined entrainment at two frequencies: (1) the image fre-
quency (2 Hz, corresponding to the 500-msec SOA
between images), which reflects entrainment to the fre-
quency of visual stimulation and should be present in all
runs, and (2) the pair frequency (1 Hz, corresponding to
the 1000-msec interval between pair onsets), which
reflects entrainment to the statistical pairs and should only
be present in the structured runs (Henin et al., 2021).
Phase coherence provides a measure of event-related

phase locking and thus is sensitive to whether neural activ-
ity is time-locked to a particular experiment event (i.e.,
image or pair onset). We measured phase coherence,
rather than spectral power, because it can be more sensi-
tive to low-frequency fluctuations (Kabdebon, Peña,
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Buiatti, & Dehaene-Lambertz, 2015; Forget, Buiatti, &
Dehaene, 2010), has been used in prior studies of statisti-
cal learning (Henin et al., 2021; Choi et al., 2020; Batterink
& Paller, 2017), and has been validated via simulations
(Benjamin, Dehaene-Lambertz, & Fló, 2021). Neverthe-
less, we replicated our primary results with spectral power
(see Appendix Figure A1).
To compute phase coherence, we epoched our data

into blocks; we then computed phase coherence across
those blocks. For some runs of the task, there was a
computer-based timing error such that the first trial’s ISI
period was shorter than expected. Because the phase
coherence analysis depends on reliable timing across tri-
als, we excluded the first two trials from all analyses. The
raw signals from the remaining 238 trials were segmented
into 17 blocks comprising 14 trials. For patients with two
runs in the category-level structured condition, the raw
signals were concatenated across runs, yielding 34 blocks.
We then converted the raw signals for each block into

the frequency domain via fast Fourier transform and
computed the phase coherence across blocks for each
contact us ing the formula R 2 = 1

N ∑
N cosφð Þ� �2 þ

1
N ∑

N sinφð Þ� �2
, where N is the number of blocks and φ is

the phase at a given frequency (Henin et al., 2021; Ding &
Simon, 2013). Phase coherence was computed separately
for each contact in the brain. We computed the peaks at
the image and pair frequencies as the coherence at those
frequencies relative to the coherence at the two neigh-
boring frequencies (±0.14 Hz).
To assess statistical reliability across participants, we

used a nonparametric, random-effects bootstrap resam-
pling approach (Efron & Tibshirani, 1986). We first pooled
the data across contacts and computed the effect of inter-
est (e.g., mean or correlation coefficient). For each of
10,000 iterations, we randomly resampled the same sam-
ple size of participants with replacement, pooled across
the resampled participants’ contacts, and recomputed
the effect of interest to populate a sampling distribution
of the effect. For example, to assess the reliability of coher-
ence at the pair frequency across electrode contacts in
visual cortex, we pooled all contacts from the seven partic-
ipants who had contacts localized to the visual cortex ROI
and computed the average coherence peak (coherence at
the pair frequency, relative to the two neighbors) across
pooled contacts. For each of 10,000 iterations, we then
randomly resampled these seven participants with
replacement, pooled the contacts from the seven
resampled participants, and recomputed the average
coherence peak. This sampling distribution was used to
obtain 95% confidence intervals and perform null hypoth-
esis testing. We calculated the p value as the proportion of
iterations in which the resampled effect had the opposite
sign as the true effect; we thenmultiplied these values by 2
to obtain a two-tailed p value and compared it with a sig-
nificance threshold of .05. This tests the null hypothesis
that the true effect is centered at zero and thus equally
likely to be positive or negative by chance. A significant

effect indicates that it did not matter which patients were
resampled on any given iteration, and thus that the
patients were interchangeable and the effect reliable
across the sample. Across-participants resampling was
performed in R (Version 4.1.3), and the random number
seed was set to 12345 before each resampling test.

To assess the reliability of a coherence peak within an
individual electrode contact, we performed a randomiza-
tion test. Using the approach described in Prichard and
Theiler (1994), we created phase-shuffled surrogate data
sets. We first transformed the raw signal for each block into
the frequency domain via fast Fourier transform. To scram-
ble the phase information, we randomly rotated the phase
angle at each frequency. We then applied the inverse Fou-
rier Transform to generate a phase-shuffled surrogate data
set. This approach randomizes the phase information at
each frequency while preserving the power spectrum
and temporal autocorrelations of the original data. We per-
formed this phase randomization for each block 1000
times and recomputed the phase coherence across blocks
of surrogate data. By comparing the observed coherence
for a given contact to a null distribution of coherence
values (that would be expected by chance in that contact),
this procedure allows us to characterize whether an indi-
vidual contact exhibits reliable entrainment.We computed
the proportion of iterations that the true peak (coherence
at the frequency of interest minus the neighboring fre-
quencies) was larger than the null distribution of peaks
to calculate the p value. Given that we had a directional
hypothesis (i.e., higher coherence than baseline), we did
not multiply these p values by 2. Within-contact randomi-
zation testing was performed in MATLAB, and the random
number seed was set to 12345 for each contact.

Phase Coherence Timecourse Analyses

To assess how neural entrainment to statistical pairs chan-
ged over the course of exposure, we performed two com-
plementary analyses.

We first quantified the time to a reliable response (num-
ber of cumulative blocks at which we observed a reliable
pair frequency response across electrodes; Sherman et al.,
2022; Henin et al., 2021). For this analysis, we recomputed
the coherence over an increasing number of blocks (e.g.,
first computing the coherence only between the first and
second blocks, all the way up to all 17 blocks). For each
cumulative block, we compared the coherence peak rela-
tive to a phase-shuffled surrogate data set (described
above) to compute the within-contact reliability. This
resulted in a timecourse of p values, allowing us to deter-
mine howmany blocks of exposure were required for reli-
able entrainment. We performed this analysis at both the
image and pair frequencies. We expected coherence at the
image frequency to become reliable rapidly, as it reflects
entrainment to sensory stimulation and does not require
learning, providing a baseline for helping to interpret the
timecourse of coherence at the (learned) pair frequency.
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We computed p value timecourses separately for the
category-level and exemplar-level structured conditions,
focusing on visual contacts that showed reliable entrain-
ment by the final block. That is, within each structured
condition, we averaged the timecourses of all contacts that
exhibited reliable entrainment to the pair frequency by
block 17. To equate opportunity for learning across
patients, we only considered the first run of the
category-level structured condition for patients with two
of these runs. To assess statistical reliability, we calculated
the nonparametric p value for a given number of cumula-
tive blocks as the proportion of iterations in which the
resampled p value was greater than .05. We then multi-
plied these values by 2 to obtain a two-tailed p value. This
resampling test was done in R (Version 4.1.3), with a ran-
dom number seed of 12345.

The above approach allows us to measure how many
blocks were needed to produce a reliable response. How-
ever, because this analysis calculates cumulative coher-
ence from the first block, it is insensitive to fluctuations
in coherence responses over the course of learning. Thus,
as an alternative approach, we computed the coherence
over sliding windows of nine blocks. We opted for sliding
windows of nine blocks because the cumulative approach
above indicated reliable entrainment at the image
frequency—which, in principle, should be present
throughout—after eight to nine blocks. We thus consid-
ered this the shortest window length over which wewould
be able to detect coherence. Nevertheless, comparable
results were obtained with even shorter window lengths,
suggesting that this analysis was mostly robust to this
decision.

For each block, we computed the peak in coherence at
both the image and pair frequencies as the difference
between the coherence at the frequency of interest, relative
to the two neighboring frequencies. This yielded a time-
course of coherence peaks for both the image and pair
frequencies. As with the cumulative analysis above, we com-
puted timecourses separately for the category-level and
exemplar-level structured conditions, focusing on visual
contacts that showed reliable entrainment in the respective
condition by the final block. Furthermore, we limited analy-
sis to each participant’s first category-level structured run.
To assess statistical reliability, we calculated the nonpara-
metric p value for a given sliding window as the proportion
of iterations inwhich the resampled coherencewas less than
0.We thenmultiplied these values by 2 to obtain a two-tailed
p value. This resampling test was done in R (Version 4.1.3),
with a random number seed of 12345.

RESULTS

Evidence for Category-level Statistical Learning in
Visual Cortex

To assess whether the brain represents visual regularities
online during learning, we capitalized on the fast, periodic

nature of visual stimulation in our task and measured neu-
ral entrainment to the frequency of both individual images
and statistical pairs (Figure 3A). Given prior work demon-
strating neural entrainment in sensory regions (Sherman
et al., 2022; Henin et al., 2021), we focused our analyses
on visual cortex. Specifically, we computed coherence
within each contact localized to the visual cortex ROI
(116 contacts) and averaged the coherence across con-
tacts and participants. To quantify the expected peaks in
coherence at the image and pair frequencies, we com-
puted the difference in coherence between the frequency
of interest (pair or image frequency) and the two neigh-
boring frequencies. We then performed a bootstrap
resampling test to assess the reliability of these peaks
across participants.
As a validation of our paradigm, we expected strong

phase coherence at the frequency of image presentation
in all three conditions. We further expected phase
coherence at the frequency of pair presentation in the
exemplar-level structured condition, replicating prior
work demonstrating that the brain entrains to the fre-
quency of statistical regularities (Henin et al., 2021;
Batterink & Paller, 2017). Critically, if the brain generalizes
across these stimuli to learn higher-level, categorical
regularities, we would expect phase coherence at the pair
frequency in the category-level structured condition.
As shown in Figure 3B, we found reliable peaks in

coherence at the image frequency in all three conditions
(exemplar-level structured: mean difference, relative to
neighboring frequencies = 0.53; 95% CI [0.47, 0.57],
p < .001; category-level structured: mean difference =
0.54; 95% CI [0.46, 0.60], p < .001; random: mean differ-
ence = 0.55; 95% CI [0.47, 0.62], p < .001). Critically, the
peak in coherence at the pair frequency was reliable in
both the exemplar-level structured condition (mean dif-
ference = 0.16, 95% CI [0.12, 0.21], p < .001) and the
category-level structured condition (mean difference =
0.10, 95% CI [0.041, 0.20], p< .001), but not in the random
condition (mean difference = −0.0027, 95% CI [−0.012,
0.0048], p = .50), providing online evidence for rapid
statistical learning of both exemplar and category pairs.
To further understand these effects, we compared the

peaks in coherence across conditions. We expected that
there would be no condition differences in the peak at
the image frequency, but that the peak at the pair fre-
quency would be higher in exemplar- and category-level
structured conditions, relative to random. Consistent with
this hypothesis, there were no pairwise differences in the
image frequency across conditions (exemplar-level struc-
tured vs. random: mean difference = −0.026, 95% CI
[−0.066, 0.0094], p = .15; category-level structured vs.
random: mean difference = −0.018, 95% CI [−0.047,
0.015], p = .28; exemplar- vs. category-level structured:
mean difference = −0.0073, 95% CI [−0.042, 0.020],
p = .61; Figure 3C, bottom). Importantly, the peak in
coherence at the pair frequency was reliably higher for
both structured conditions than for the random condition
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(exemplar-level structured vs. random: mean difference =
0.17, 95% CI [0.13, 0.21], p < .001; category-level struc-
tured vs. random: mean difference = 0.10, 95% CI
[0.043, 0.21], p < .001; Figure 3C, top). Interestingly,
the peak in coherence at the pair frequency wasmarginally
higher in exemplar- versus category-level structured con-
dition (mean difference = 0.062, 95% CI [−0.0085, 0.11],
p = .075), suggesting that stimulus regularities may be
representedmore robustly than category-level regularities
in visual cortex, at least after a fixed and small amount of
exposure.
The above analyses were per formed on data

concatenated across the two runs of the category-level
structured condition (for participants with two runs). To
confirm that evidence for categorical learning was not
dependent on including more data, we repeated the

analysis only considering the first category-level structured
run. Indeed, we found a comparable peak in coherence at
the pair frequency (mean difference = 0.096, 95% CI
[0.042, 0.19], p < .001); the peak in coherence at the
image frequency remained reliably high as well (mean dif-
ference = 0.56, 95% CI [0.49, 0.62], p < .001). Further-
more, the peak in coherence at the pair frequency
remained reliably higher than the random condition
(mean difference = 0.099, 95% CI [0.044, 0.20], p <
.001) and marginally lower than that of the exemplar-level
condition (mean difference = −0.067, 95% CI [−0.0028,
0.12], p = .061).

Together, these results demonstrate robust representa-
tion of statistical regularities in visual cortex, across levels
of abstraction. After only 2 min of exposure, the visual cor-
tex entrained not only to regularities at the exemplar level

Figure 3. Phase coherence analysis. (A) Schematic of analysis and hypothesized neural oscillations. We expected entrainment of visual contacts
at the frequency of image presentation in all conditions. In the two structured conditions (exemplar-level and category-level), we also expected
entrainment at the frequency of (learned) pairs. (B) These hypotheses were confirmed: We observed reliable peaks in coherence at the image
frequency in all three conditions, but only at the pair frequency for the category-level and exemplar-level structured conditions. Error shading
indicates bootstrapped 95% confidence intervals. (C) Coherence peaks at the pair frequency (top) and image frequency (bottom) for each participant
across the three runs. Each circle/ line represents one participant.
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(with the same exact image pairs repeating), but also to
regularities that existed only at the category level (requir-
ing generalization over exemplars to uncover the categor-
ical structure). Critically, these data demonstrate that
category-level regularities can be learned and represented
online during learning, extending prior behavioral work
that relied on delayed, offline test measures to infer that
such learning occurred.

Co-Representation of Exemplar and
Category Regularities

Above, we found evidence that visual cortex represents
both exemplar- and category-level regularities. However,
it is unclear whether these two effects are related. One
possibility is that the more basic ability to extract regular-
ities in sensory stimuli is a precursor for learning more
complex regularities, in which case we might expect the
same contacts to exhibit both effects and for the strength
of these effects to be related. Another possibility is that
exemplar-level and category-level statistical learning are
fundamentally distinct processes that may be imple-
mented in different neural populations, and thus may be
represented in different contacts and/or in the same con-
tacts but in an unrelated manner.

To address this question, we first asked whether the
strength of neural entrainment was correlated between
conditions. Across all electrode contacts in the visual cor-
tex ROI, we computed the Pearson correlation coefficient
between the coherence peaks at the pair frequency. We
found a reliable correlation in the pair frequency peak
for category- and exemplar-level structured conditions
(r = .33, 95% CI [0.019, 0.58], p = .033; Figure 4A). In
contrast, there was no reliable correlation between the
random condition and either the category-level structured
condition (r = −.10, 95% CI [−0.24, 0.077], p = .22) or

the exemplar-level structured condition (r = −.011, 95%
CI [−0.14, 0.14], p = .82). The modest correlation
between coherence for exemplar pairs and category pairs
suggests a degree of shared representation of regularities
across levels of abstraction. Importantly, given that we did
not find such correlations with the random condition, we
can be confident that this correlation was not driven by
generic across-contact factors such as baseline coherence
or data quality.
As a further control, we computed the pairwise correla-

tions for the image frequency peaks. Unlike the pair fre-
quency, we did not expect these correlations to differ
between conditions. Indeed, we found high correlations
across the board (category- and exemplar-level structured,
Figure 4B: r= .83, 95% CI [0.70, 0.92], p< .001; category-
level structured and random: r = .88, 95% CI [0.81, 0.93],
p < .001; exemplar-level structured and random: r = .87,
95% CI [0.79, 0.93], p < .001).
To further address the relationship between exemplar

and category regularities, we labeled individual contacts
according to whether they exhibited a reliable coherence
peak at the frequencies of interest in each condition. This
labeling was the result of a randomization test performed
for each individual contact, in which the coherence at the
frequency of interest was compared with a null distribu-
tion of coherence computed from phase-shuffled surro-
gate data sets; such an approach allows us to define
whether a given contact exhibits reliable entrainment at
the frequencies of interest. Of the 116 total electrode con-
tacts in visual cortex, 67 exhibited entrainment to the pair
frequency in one or both structured conditions; 27
entrained to the pair frequency in the exemplar-level
structured condition only, 12 in the category-level struc-
tured condition only, and 28 in both structured condi-
tions. To assess whether this is more overlap than would
be expected by chance, given the number of reliable

Figure 4. Correlations across contacts. (A) Correlation between the coherence peak at the pair frequency in the category-level structured condition
and the coherence peak at the pair frequency in the exemplar-level structured condition. (B) Correlation between the coherence peak at the image
frequency in the category-level structured condition and the coherence peak at the image frequency in the exemplar-level structured condition. Each
circle represents an electrode contact. Color coding indicates whether a given contact exhibits reliable entrainment at the pair frequency (A) or image
frequency (B) in the exemplar-level structured condition only, category-level structured condition only, or both (black indicates that the contact does
not exhibit reliable entrainment in either condition). Error shading indicates bootstrapped 95% confidence intervals.

1320 Journal of Cognitive Neuroscience Volume 35, Number 8

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/doi/10.1162/jocn_a_02012/2140558/jocn_a_02012.pdf by U
niversity of Pennsylvania user on 28 June 2023



contacts in each condition, we independently shuffled the
correspondence between contacts and significance labels
across conditions and recomputed the overlap. We found
that the observed overlap was indeed reliable (mean null
overlap = 19 contacts, 95% CI [14, 24], p< .001), indicat-
ing that some parts of visual cortex may exhibit a dual rep-
resentation of both exemplar and category regularities.
To understand whether these dual-coding contacts

were responsible for the correlations observed above,
we recomputed the correlations after removing these con-
tacts. Indeed, this eliminated the correlation (88 non-
overlapping contacts: r = −.086, 95% CI [−0.18, 0.15],
p = .31). However, there was also no reliable correlation
when restricting the analysis to only the dual-coding con-
tacts (28 overlapping contacts: r = .041, 95% CI [−0.36,
0.33], p = .41). This suggests that the original correlation
benefited from variance in coding properties across con-
tacts and/or from the greater sensitivity provided by a
larger sample size of contacts.

Examining the Timecourse of Learning in
Visual Cortex

We have presented evidence that populations of electrode
contacts in visual cortex entrain to both exemplar and
category-level regularities online during statistical learn-
ing. However, it is possible that statistical learning of cate-
gory regularities requires more exposure than learning of
simpler, stimulus-driven exemplar regularities. To assess
the evolution of entrainment over the course of learning,
and whether this timecourse differs across conditions, we
used two related analysis approaches. For both analyses,
we only analyzed each patient’s first category-level struc-
tured run (to equate the opportunity for learning both
across the exemplar-level and category-level structured
conditions) and limited analysis to electrode contacts that
exhibited reliable entrainment (as measured by within-
contact randomization tests) to the pair frequency by
the final block.
First, we analyzed the time required for a reliable

entrainment response. We recomputed coherence over
an increasing number of blocks (e.g., first computing the
coherence only between the first and second blocks, then
between the first, second, and third blocks, all the way up
to 17 blocks) to determine the block count at which con-
tacts exhibited reliable entrainment. In other words, this
analysis asks how much exposure was required for con-
tacts that exhibited reliable entrainment in the final block
to reach a statistically reliable response.
In the category-level structured condition (Figure 5A,

left), we found reliable entrainment only when computing
coherence across 16 or more blocks (16 blocks: mean p=
.023, 95% CI [0.0033, 0.044], p = .0056; 17 blocks: mean
p = .0097, 95% CI [0.0023, 0.018], p < .001). In the
exemplar-level structured condition (Figure 5A, right),
entrainment appeared marginally after 14 blocks (mean
p = .029, 95% CI [0.011, 0.052], p = .057) and reliably

for 15 or more blocks ( ps < .001). These data suggest that
exemplar and category regularities were learned at a sim-
ilar timescale, with slightly faster acquisition for exemplar
regularities.

To establish a floor of how quickly we might theoreti-
cally expect to see a reliable entrainment effect, we per-
formed this same analysis for the image frequency (again,
only considering contacts that exhibited reliable entrain-
ment to the image frequency in the final block). Because
entrainment to the images was given by the sensory input
and not from statistical learning, we did not expect mean-
ingful differences between conditions. In the category-
level structured condition (Figure 5B, left), there was
reliable coherence at the image frequency by Block 9
(mean p= .028, 95% CI [0.0072, 0.049], p= .037; all sub-
sequent block counts, ps < .001). The exemplar-level
structured condition (Figure 5B, right) followed a similar
pattern, with reliable entrainment by Block 8 (mean p =
.026, 95% CI [0.009, 0.041], p= .0018; all subsequent block
counts, ps < .001). Finally, we also computed the time-
course of the image frequency effect in the random condi-
tion and found a similar pattern, with reliable entrainment
by Block 9 (mean p= .033; 95% CI [0.016, 0.048], p= .024;
block 10: mean p= .034, 95% CI [0.016, 0.049], p= .036; all
subsequent block counts, ps < .001).

The analysis above provides a relatively stringent test,
measuring the timecourse of statistically reliable coher-
ence peaks. Such an analysis may not be sensitive to fluc-
tuations in learning over time, as it only captures the
cumulative coherence response. Thus, we conducted
another kind of analysis in which we computed coherence
in sliding windows of nine blocks over the course of the
exposure phase. In contrast to the cumulative analysis,
the sliding-window analysis revealed reliable entrainment
throughout exposure, for both the category-level and
exemplar-level structured conditions (all ps < .001;
Figure 5C). We observed no clear trajectory in learning
in either condition, nor distinct peaks that were consistent
across participants. However, there was considerable
variability across participants, raising the possibility of
individual differences in the speed of learning.

As with the “time to reliable response” analysis, we addi-
tionally considered the timecourse of the image frequency
coherence peak using the sliding-window approach.
Similar to the pair frequency results, we found reliable
entrainment at the image frequency throughout expo-
sure (all ps < .001; Figure 5D).

Category-level Statistical Learning across the Brain

We initially focused on how visual cortex represents visual
regularities given our prior work (Sherman et al., 2022),
but a wide range of brain regions have been implicated
in statistical learning (Henin et al., 2021; Batterink, Paller,
& Reber, 2019). To examine online learning more broadly,
we measured neural entrainment to exemplar and cate-
gory regularities in an exploratory brain-wide analysis.
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Figure 5. Timecourse analyses. (A) Emergence of a reliable phase coherence peak at the pair frequency across blocks in the category-level structured
(left) and exemplar-level structured (right) conditions. For each cumulative block count N, we computed the proportion of iterations that the
coherence peak across n blocks was greater than the peak across n blocks of phase-shuffled data to obtain a p value; we then determined the first
block at which the permuted p value across contacts was reliably less than .05 (dashed line). (B) Emergence of a significant response at the image
frequency across blocks in the category-level structured (left) and exemplar-level structured (right) conditions. (C) Coherence at the pair frequency
over sliding windows of nine blocks. x Axis ticks indicate the middle of a window (e.g., x = 6 indicates a sliding window over blocks 2–10). (D)
Coherence at the image frequency over sliding windows of nine blocks. Error shading indicates bootstrapped 95% confidence intervals. Thick line
indicates mean across participants. Thin lines indicate the mean for each participant.

Figure 6. Exploratory brain-wide analyses. (A) Histogram: distribution of how many contacts would be expected to entrain to the pair frequency in
both the exemplar- and category-level structured conditions by chance; red line indicates the observed overlap, indicating that many more contacts
coded for both exemplar and category regularities than would be expected by chance. Inset: Venn diagram illustrating the total number of contacts
that entrained to the pair frequency in both conditions and their overlap. (B) Map of contacts (across all patients) that entrained to the pair frequency
in one or both conditions on a standard glass brain.
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First, as in the analysis restricted to visual cortex, we
identified which contacts represented exemplar and/or
category regularities by testing for reliable phase coher-
ence at the pair frequency relative to neighboring frequen-
cies (by comparing to a null distribution of phase-shuffled
surrogate data). Of 1310 contacts across all patients, we
found reliable entrainment at the pair frequency in 175
contacts for the exemplar-level structured condition and
in 177 contacts for the category-level structured condition;
41 of these contacts overlapped. This amount of overlap
was reliably greater than expected by chance (Figure 6A;
mean null overlap = 24 contacts, 95% CI [16, 32], p <
.001). Because this brain-wide analysis included visual cor-
tex, it is possible that the reliable overlap was driven by
visual contacts, which we earlier showed exhibited reliable
overlap. We therefore repeated the brain-wide analysis
after excluding contacts in the visual cortex ROI. Of the
remaining 1194 contacts across all patients, we found reli-
able entrainment at the pair frequency in 120 contacts for
the exemplar-level structured condition and 137 contacts
for the category-level structured condition; 13 of these
contacts overlapped. However, this amount of overlap
was not reliably greater than what would be expected by
chance (mean null overlap = 14 contacts, 95% CI [8,
20], p = .52), suggesting that dual coding of exemplar-
and category-level regularities in individual contacts was
restricted to visual cortex.
We next sought to localize these structure-sensitive con-

tacts throughout the brain (Figure 6B). We mapped the
contacts onto the Harvard–Oxford cortical and subcortical
atlases and quantified howmany contacts exhibited effects
within each gray-matter atlas ROI. Table 2 summarizes the
results by listing atlas ROIs that contained at least five
contacts that entrained at an uncorrected level to the pair

frequency in at least one of the structured conditions.
Consistent with our planned visual ROI, many of these
contacts were located in visual cortex (e.g., lateral occipital
cortex, lingual gyrus, occipital pole). However, we also
observed entrainment to learned regularities in frontal
and anterior temporal regions, some showing a prefer-
ence for regularities available directly in the exemplar
stimuli (e.g., temporal pole) and others for regularities
that required generalization across category exemplars
(e.g., frontal pole and precentral gyrus). Importantly,
claims about localization in the brain are limited by the fact
that we did not have full coverage of all brain regions,
given that electrode placement was determined clinically.

DISCUSSION

In the current study, we capitalized on the high spatial and
temporal precision of iEEG to explore how the brain learns
and represents statistical regularities across varying levels
of abstraction. Specifically, we contrasted the learning of
exemplar-level regularities (defined by the transition prob-
abilities between individual images) with the learning of
category-level regularities (defined by the transition prob-
abilities between image categories). We found robust rep-
resentation of both kinds of regularities in visual cortex
and throughout the brain during statistical learning. These
findings speak to several issues in the statistical learning
literature and raise questions for future research.

Online Evidence for Category-level
Statistical Learning

In measuring neural entrainment to the frequency of
regularities, we employed a covert, online measure of

Table 2. Gray-matter ROIs in the Harvard–Oxford Cortical and Subcortical Atlases that Contained at Least Five Contacts with Reliable
Entrainment at the Pair Frequency in the Category- and/or Exemplar-level Structured Conditions

Localization of Task-sensitive Contacts

ROI Total Category Exemplar Overlap Image

Frontal pole 176 19 7 0 69

Insular cortex 59 5 14 0 28

Middle frontal gyrus 65 7 5 1 36

Precentral gyrus 52 10 5 0 24

Temporal pole 51 0 7 0 18

Middle temporal gyrus, post 45 3 6 0 8

Postcentral gyrus 47 9 6 0 25

Lateral occipital cortex, sup 36 2 10 4 26

Lingual gyrus 13 1 5 4 13

Occipital pole 21 5 5 9 21

We also included the total number of contacts in each ROI (total) and the number of contacts that entrained at the image frequency in the category-
and/or exemplar-level structured conditions (image).
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statistical learning. This builds on a body of work that
measured category-level statistical learning with offline
behavioral tests, such as asking participants to judge
their familiarity with pairs of images or categories (Jung
et al., 2021; Emberson & Rubinstein, 2016; Otsuka et al.,
2013; Brady & Oliva, 2008). However, it is unclear
whether above-chance performance on these tests
reflects online learning of category relationships during
the learning process itself or the formation of specific
stimulus associations during learning that enabled suc-
cessful inferences about test items from the same catego-
ries. It is also possible that these behavioral studies
engendered both online learning and inferences at test,
yet it remains unclear which effect (or both) drove test
performance. Further complicating the interpretation of
offline behavioral performance as evidence of online
learning, online and offline measures of statistical learn-
ing are not always correlated (Kiai & Melloni, 2021). The
current study sought to skirt these interpretational chal-
lenges by measuring neural entrainment as an online
neural index of statistical learning. The observed entrain-
ment to category pairs provides novel evidence for rapid
statistical learning across levels of abstraction.

One limitation of our study is that it is unclear how the
neural entrainment measure of statistical learning relates
to more canonical behavioral measures. Given our short
testing time with each patient, their limited energy and
attention span, and the small number of patients, we opti-
mized our task design and testing time for neural rather
than behavioral measures of learning. Relatedly, to ensure
the participants processed the scene categories, we
instructed them in advance that they would be seeing
images from six categories. Selective attention to individ-
ual items has been shown to facilitate statistical learning
between items, even when these regularities themselves
are not mentioned or instructed (Sherman & Turk-
Browne, 2022; Turk-Browne, Jungé, & Scholl, 2005).
Indeed, we did not indicate to participants that categories
were paired nor tell them to attend to the temporal order
of images (althoughwe note that some prior studies of sta-
tistical learning have explicitly cued participants to poten-
tial temporal regularities; Plate, Schapiro, & Waller, 2022;
Bogaerts, Richter, Landau, & Frost, 2020; Siegelman,
Bogaerts, Kronenfeld, & Frost, 2018; Arciuli, Torkildsen,
Stevens, & Simpson, 2014). Future studies could perhaps
use scalp EEG in a well-powered normative sample to help
link neural and behavioral measures of category-level
statistical learning, as well as to understand the role of
categorical attention for both behavioral and neural mea-
sures of statistical learning. Future studies could further
consider how neural entrainment during learning relates
to both online (e.g., response time) and offline (e.g., famil-
iarity) behavioral measures; that said, it may be difficult to
develop online behavioral measures during a task
designed for neural entrainment, given the fast presenta-
tion rates that such tasks require. Prior studies have dem-
onstrated that neural evidence of statistical learning can

appear earlier and even in the absence of behavioral evi-
dence of learning (Turk-Browne et al., 2009); thus, it is
possible that our current results reflect a rapid sensitivity
of the brain to category regularities.
Although we observed reliable entrainment to category-

level regularities, the effects were somewhat attenuated
relative to the exemplar-level condition. For example,
across participants, we observed a marginally higher peak
in coherence for exemplar-level, relative to category-level
regularities. Furthermore, our timecourse analyses pro-
vided some evidence that exemplar-level learning may
emerge as reliable faster than category-level learning.
One interpretation of these results is exemplar-level regu-
larities are easier to learn (given the exact stimulus repeti-
tion). However, a recent study of statistical learning in the
auditory modality demonstrated that entrainment to sta-
tistical regularities might partially reflect a methodological
artifact resulting from stimulus repetition (Pinto, Prior, &
Zion Golumbic, 2022). Although it is unclear whether such
an artifact applies to visual stimuli (the specific effect per-
tained to acoustic properties), such an effect could not
explain our category-level results, as the exemplars in this
condition varied across category repetitions.
Additional limitations apply in how to interpret the

timecourse results. Although these results provide
evidence that learning occurs quite quickly (less than
2 min) in both structured conditions, it is unclear how this
maps onto the underlying trajectory of learning. Our two
analysis approaches provided complementary, although
somewhat divergent, results. First, analyzing the time to
a reliable entrainment response, we found evidence of sta-
tistical learning for exemplar regularities two blocks earlier
than for category regularities. Does this small difference in
the amount of required exposure mean that specific stim-
ulus associations must be learned before more abstract
associations? Or, perhaps the individual images were
represented both as exemplars and categories during
perception and associations were learned at both levels
in parallel? In this case, learning of category regularities
may be slower because of the added complexity in dealing
with greater input variability (e.g., in the extent to which a
given exemplar was a prototype of a category). The “time
to reliable response” measure has been used before
(Henin et al., 2021), but conflates time in the experiment
with the number of cumulative blocks included. Thus,
seemingly early learning (like of exemplar regularities)
could instead reflect a larger effect size that requires fewer
blocks to reach significance. We thus adopted a second
method that defines a window size with a fixed number
of blocks and examines the emergence and dynamics of
learning by sliding the window over the timecourse. Using
this sliding-window approach, we observed reliable
entrainment in the group average across all windows in
both conditions. However, there was considerable vari-
ability across participants, which may reflect individual dif-
ferences in learning rates across participants or increased
noise in considering coherence across a small number of
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blocks (Benjamin et al., 2021). Furthermore, for both anal-
yses, we only included contacts that exhibited reliable
entrainment to the pair frequency in the final block, as
including nonreliable contacts would increase the noise
in any timecourse measurement. However, this choice
may have obscured heterogeneous timecourses for differ-
ent aspects or stages of learning across the brain. Future
work could clarify the timecourse of exemplar and cate-
gorical statistical learning by including an online behav-
ioral measure of learning, which would help validate the
neural timecourse analyses.
Finally, different aspects of learned structure can be

measured. For example, memory for the temporal order
of items within a statistical unit (e.g., triplet) can be disso-
ciated from memory for the item groupings (Forest, Finn,
& Schlichting, 2022; Park, Rogers, & Vickery, 2018), and
these distinct types of memory may be supported by dif-
ferent underlying neural representations (Henin et al.,
2021; Davachi & DuBrow, 2015). Although providing
evidence of learning overall, the current study, and the
basic neural entrainment design it employed, is insensitive
to these differing underlying representations. Future
studies could employ other neural measures, such as
pre- and postlearning templates (Schapiro, Kustner, &
Turk-Browne, 2012), to assess changes in the representa-
tions of the individual paired items. Such measures could
be used to test hypotheses about how these constituent
items are represented at different levels of abstraction as
a function of statistical learning.

Local and Distributed Representations of
Visual Regularities across the Brain

We focused our main analyses on visual cortex, which we
hypothesized would show neural entrainment to visual
regularities between visual images (Sherman et al., 2022;
Henin et al., 2021). However, we also performed an
exploratory brain-wide analysis to uncover where category
and exemplar regularities were represented throughout
the brain. This analysis largely confirmed our a priori
choice to focus on visual cortex, but also revealed a distrib-
uted representation of structure, with many frontal (e.g.,
frontal pole, insula, middle frontal gyrus, and precentral
gyrus) and temporal (e.g., temporal pole, middle temporal
gyrus) regions also exhibiting entrainment to visual regu-
larities. These findings are largely consistent with prior
fMRI studies demonstrating sensitivity to structure in
these regions (Karuza et al., 2013, 2017; Turk-Browne,
Scholl, Johnson, & Chun, 2010; Turk-Browne et al., 2009).
This analysis revealed relatively little evidence that

entire brain regions specialize at a particular level of
abstraction. Although some regions exhibited a bias
toward one level (e.g., more contacts in the frontal pole
entrained only to category regularities, and more contacts
in the insula entrained only to exemplar regularities), very
few regions solely represented one level. The only excep-
tion was the temporal pole, which only exhibited

entrainment to exemplar-level regularities. Similarly, most
contacts did not show a general sensitivity to structure
regardless of the level of abstraction. The small (but reli-
able) number of such contacts representing both category
and exemplar regularities were restricted to visual cortex
(e.g., occipital pole). Still, the majority of visual contacts
entrained to one level of structure or the other, but not
both. At the level of entire brain regions, some regions
contained distinct contacts that entrained selectively to
category and exemplar regularities, yet no contacts that
entrained to both. This raises the possibility that there
may be distinct neural populations and cognitive pro-
cesses even within the same brain region for statistical
learning at varying levels of abstraction.

An important limitation to these exploratory brain-wide
analyses is that they only had access to partial coverage of
the brain. Although we had relatively broad coverage of
cortical regions for an iEEG study, the electrode locations
were chosen entirely for clinical purposes and were thus
not always comprehensive or standardized across
patients. However, this is an expected limitation for any
iEEG-based study. Furthermore, we had insufficient cover-
age of the hippocampus in this sample (only five contacts
across all patients), a region that has been consistently
implicated in rapid statistical learning (Graves et al.,
2022; Henin et al., 2021; Sherman & Turk-Browne, 2020;
Covington, Brown-Schmidt, & Duff, 2018; Schapiro et al.,
2012; Turk-Browne et al., 2009). Future studies could
recruit a more targeted sample of iEEG patients (e.g., with
hippocampal depth electrodes) or use fMRI for high-
resolution hippocampal coverage potentially across a
larger sample of individuals.

Relatedly, it is important to note that our recordings
were from macroelectrodes, meaning that a single intra-
cranial contact is pooling over many neurons. Thus, even
in cases in which we observed a single contact represent-
ing both exemplar and category regularities (e.g., in occip-
ital pole), this does not necessarily mean that these types
of regularities are being represented by precisely the
same neural population. Rather, these two types of regu-
larities may be coded by distinct neural populations that
happen to be measured by a single contact. Future work
employing microelectrodes might help to resolve the spa-
tial precision needed to make strong claims about the
underlying neural populations supporting these learning
computations.

CONCLUSIONS

Together, our results provide evidence for rapid and
robust online representation of categorical regularities
during statistical learning. This occurred heavily within
visual cortex, suggesting a remarkable capability for the
brain to aggregate across noisy, idiosyncratic instances to
extract stable properties of the environment that can gen-
eralize to new situations.
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