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that sounds can arrive with a delay of around 0.5
x ms between the two ears when the sound is pre-
sented off to one side. Similar processing mecha-

f nisms that make use of small timing differences
y could also apply in other sensory pathways.
it In general, it is clear that the speed with which
il the brain can process stimuli is absolutely critical
i for survival, whether you are predator or prey. It is
i- |  remarkable that the brain, with neurons that fire, at
it ~ most, a few hundred times per second and with
d ~ conduction velocities for nervous transmission that
t | aresoslow,can compete with and even outperform
v the most sophisticated artificial vision systems.
i Simon |. Thorpe
- See also Consciousness; Neural Representation/Coding;
Y Priming; Rapid Serial Visual Presentation
1€
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ATISTICAL LEARNING

atural to think of perception in terms of the
g of individual features (such as color

and shape) and how they are combined into dis-
crete objects (such as animals and bicycles). This
simple characterization underestimates the infor-
mation that is available in perceptual input,
though, because there are also massive amounts of
information about how these features and objects
are distributed in space and time. In time, for
example, eating food at a restaurant js more likely
to be followed by paying a bill than by climbing a
tree—just as (in English) the syllable /sci/ is more
likely to be followed by /ence/ than by /on/. And in
space, for example, a car is more likely to be next
to a bicycle than to a stapler. Discovering such
regularities is difficult because they are embedded
within complex and continuous environments
where not all information is relevant. But the mind
1s nevertheless sensitive to such regularities, uncov-
ering them in part by means of statistical learning:
an automatic and unconscious perceptual process
that encodes statistical regularities across space
and time. We are often unaware of the operation
of statistical learning, yet it may play a crucial role
In segmenting the continuous perceptual world
into discrete manageable units, such as words,
events, objects, and scenes. This entry describes
statistical learning, how and when it operates, and
how it may support online perception.

Segmenting the World
via Statistical Regularities

Statistical learning (henceforth abbreviated SL) is a
type of implicit learning, in that it can occur with-
out intent or awareness. Indeed, like many other
aspects of perception, it occurs beneath the level of
consciousness, and we are not even normally
aware that our minds are engaging in such learning
at all. Implicit learning has a long history in psy-
chology, but the study of SL in perception research
has arisen only in the last 15 years, as researchers
have focused on how such processing may serve to

segment continuous perceptual input into discrete
units.

Auditory Statistical Learning

In its modern incarnation, the study of SL began
in the domain of language acquisition. When you
first hear a foreign language, you do not understand
the words, but you also may find it difficult to tell
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where the words start and stop in the first place.
This is because most natural speech involves a
largely continuous pattern of sound: What seem like
pauses between individual words do not exist in the
sounds entering our ears, but are rather constructed
by our minds. This means that a first challenge for
language learners is simply to find word boundaries
in natural speech. Developmental researchers includ-
ing Richard Aslin, Elissa Newport, and Jenny
Saffran proposed that this task might be accom-
plished in part by the processing of statistical regu-
larities in speech streams. Using a simple artificial
language, they showed that eight-month-old infants
were able to use statistical regularities over time to
segment words out of continuous syllable streams.
Infants in such experiments might initially hear
a continuous stream of syllables consisting of
repeated sequences of four different triplet “words,”
each composed of three syllables (e.g., bidaku,
golabu, padoti, turopi). These four triplets are
repeated in a randomized order in a continuous
stream, with no acoustic cues (such as longer
pauses or prosody) to indicate where each triplet
starts or stops (e.g. < .. . bidakupadotigolabubida-
kuturopi . . .”). Nevertheless, this stream contains
robust statistical structure: The first syllable in a
triplet perfectly predicts the second syllable, but the
third syllable could be followed by several other
syllables (corresponding to the first syllable of the
following word). For example, if we denote the
four triplets as ABC, DEF, GHI, and JKL—with
each syllable denoted by a capital letter—then A
will always be followed by B, but C will be fol-
lowed by either D, G, or J. After only a few min-
utes of exposure to such a stream, a test phase then
begins in which the infants are presented with
three-syllable sequences in isolation—either triplets
(e.g. ABC) or “nonword” foils composed from the
same syllables, but in an order they have never
heard before (e.g. AEI). Despite the fact that all of
the individual syllables are equally familiar, infants
can reliably discriminate the words and nonwords
(as evaluated by a procedure that measures how
long they attended to each type). Moreover, they
can even discriminate triplets (e.g. ABC) from
“partword” foils that they did hear, but less often
(e.g. BCG, from when triplet ABC happened to be
followed by GHI)—and later studies demonstrated
a sensitivity to even more subtle statistical patterns.

This is an example of SL because (1) the relevant
regularities existed only in the distribution of syl-
lables in time, because each individual syllable was
heard equally often, and (2) the triplet “words”
were obscured in an otherwise continuous stream
of perceptual input.

This ability has led some researchers to speculate
that SL may be a means by which children come to
learn where the words are in continuous speech, but
the precise relationship of SL to language acquisition
remains uncertain. On one hand, this connection is
supported by demonstrations that SL occurs more
readily for linguistically relevant auditory informa-
tion, and that it directly facilitates subsequent word
learning. On the other hand, SL operates in subjects
who have already mastered language (i.e., human
adults), and even in nonlinguistic subjects (including
nonhuman primates and even rodents)—and it also
operates over many types of nonlinguistic input,
such as musical tones. Moreover, some computa-
tional modeling studies suggest that SL is not suffi-
cient to identify words in actual natural-language
speech streams.

Visual Statistical Learning

Though SL had its origins in studies of language
acquisition, it also operates pervasively in visual per-
ception, where it has recently become a phenomenon
of considerable interest. Visual statistical learning
(VSL) can be measured in adult observers, for exam-
ple, with continuous sequences of nonsense-shapes,
when they appear one after another in an exact ana-
logue to the auditory studies with infants—with each
auditory syllable now replaced by a visual shape.
After passively observing such a shape sequence
(always with a constant between-shape delay) fo
several minutes, observers are able to reliably distin
guish triplet “words” from three-shape foils whe
they are pitted directly against each other (now
explicitly segmented) in a surprise “Which is mor
familiar?” test. Recent functional magnetic resonanc
imaging (fMRI) studies using similar designs havess
been able to explore the time course of VSL, and sug
gest that it is highly efficient—with the brain alread_
discovering the presence of statistical structure alte
only the third or fourth repetition of each triplet-

VSL can also extract spatial regularities W
multiple objects are viewed simultaneously:
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some such studies, for example, observers see sev-
eral shapes that are placed into a grid in reliable
patterns (unbeknownst to them). For example,
shape A might always appear immediately above
and to the right of shape B. Because many such
patterns are spatially interleaved in each grid,
however, the pairs can only be spatially segmented
on the basis of their statistically reliable spatial
relations as observers see grid after grid. At test,
observers are presented with the original spatial
pairs pitted against foils consisting of two equally
familiar shapes that had appeared together less
frequently. Again, observers are able to judge the
actual pairs as being more familiar.

Note that although SL may operate over spatial
or temporal regularities, some of the mental repre-
sentations that result from SL may be abstracted
from such contexts. Indeed, VSL of spatial layouts
can later be expressed in purely temporal contexts,
and VSL of temporal sequences can later be
expressed in purely spatial layouts.

What Type of Process Is Statistical Learning?

Since SL was first studied in these ways in the mid-
1990s, a great deal has been learned about its
underlying nature.

Automaticity and Implicitness

In adults, SL has most commonly been measured
by explicitly separating sequences into their respec-
tive triplet “words” in a separate test phase, and
then testing to see whether observers judge them to
be more familiar than various types of foils, in
forced choices. Such familiarity judgments could
indicate conscious recognition of the statistical
structure, but in fact such judgments are often reli-
able even when subjects were completing a separate
“cover” task during the initial exposure, and even
when they think they are merely guessing during
the test phase. VSL has also been demonstrated
with several implicit measures, however, including
behavioral measures showing speeded response
times for statistically predictable targets, and fMRI
measures that have shown robust neural sensitivity
to statistical structure even in subjects who show
no SL by conventional familiarity tests. At the same
time, additional studies have shown that SL in both

the auditory and visual domains will only operate
when the relevant stimuli are attended. If attention
is instead directed away to other stimuli during the
initial exposure, SL will not occur. Thus, it seems
that SL is automatic in some senses, but not in oth-
ers: It is gated by attention, but it nevertheless oper-
ates without intent or awareness.

The Input to Statistical Learning

One of the most critical steps in understanding
any perceptual process is to determine the types of
input over which that process operates. SL operates
in multiple sensory modalities (including touch, in
addition to vision and audition), and can accom-
modate many kinds of individual stimuli (such as
musical tones in audition and dynamic events in
vision). Research on VSL of temporal sequences
also indicates that learning can operate at almost
every level of the “hierarchy” of visual processing—
from low-level visual features (such as shape), to
discrete objects containing multiple features (such
as color and shape), to high-level categories of
visual scenes (such as “kitchens” and “forests™).

Moreover, SL may help to determine what
counts as an “object” in the first place. Statistical
associations over time, for example, seem to help
determine that a visual feature, such as color, is an
intrinsic part of some objects (e.g., bananas) but
not others (e.g., t-shirts). As a result, SL for
colored-shape sequences can be expressed later for
monochromatic shapes if the color-shape associa-
tions were loose during the initial exposure, but
not if color and shape were reliably paired. For
example, if shapes are assigned to unique fixed
colors, then learning of colored-shape triplets can
be expressed when the shapes are presented with
their original colors at test, but not when the same
shapes are presented in black during test (a context
that is sufficient to express learning when the
shapes have colors that randomly vary during
familiarization). Similarly, studies of spatial VSL
have demonstrated that learning does not operate
efficiently over spatial patterns that are embedded
within larger reliable patterns. For example, when
spatial triplets are embedded in static grids, observ-
ers learn the triplets, but not their component
pairs. And in audition, learning of nonadjacent
statistical dependencies in temporal sequences is
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usually difficult, but it becomes easier when the
interrupting stimuli are either highly variable or
perfectly constant (as opposed to when they are
only moderately variable). In each case, statistical
variability seems to determine the “chunks” over
which learning operates in the first place.

Controlling Statistical Learning

Recent research has also begun to determine the
conditions under which SL will cease to operate. In
most temporal SL studies, for example, the regulari-
ties are present in the sequences as soon as they
begin, and they persist until the initial exposure
phase ends. Learning is influenced in interesting
ways, however, when the regularities appear only at
the beginning or ending portions of the sequences—
with the rest of the sequences filled with completely
random orders of syllables or shapes. (Because of the
implicit nature of SL, subjects in such experiments
are not overtly aware of such transitions.) In this
situation, learning will still occur when the structure
precedes the structure-less “noise”: the regularities
that are initially discovered may remain robustly
encoded, even when they later “fall apart.” However,
when the noise precedes the structure, learning is
either weak or nonexistent: Perceptual processes
may effectively learn that there is “nothing to learn”
based on the initial noise and will stop trying (even
though subjects still attend to the sequence).

What Is Statistical Learning Good For?

Statistical learning appears to a ubiquitous process
in perception, but what is it good for? Recent
research suggests at least three answers. First, by
segmenting continuous streams of input, SL may
effectively form the “chunks” that later processes
depend on (e.g., the “words” in syntactic process-
ing or the “objects” stored in visual working mem-
ory). This is supported by demonstrations that SL
of linguistic stimuli can directly facilitate later word
learning or relative-clause comprehension. Second,
SL may speed later perceptual processing, making it
more efficient—as is apparent in implicit response-
time measures of VSL. Third, SL may be adaptive
in that it yields a type of “future-oriented” process-
ing, helping us to predict what we may be about to
experience, so that we can adaptively tune our cur-
rent behavior. Recent fMRI studies of VSL, for

example, suggest that it yields a type of “implicit
anticipation” of upcoming stimuli. Such implicit
anticipation may be responsible for the facilitation
previously described and may help the visual system
cope with ambiguous or degraded stimuli. In sum,
statistical learning is clearly a product of percep-
tion, but it may also in turn facilitate perception.

Brian |. Scholl and Nicholas B. Turk-Browne

See also Perceptual Learning; Unconscious Processes;
Visual Scene Statistics
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SURFACE AND MATERIAL
PROPERTIES PERCEPTION

Objects in the environment can be descrlbch
many scales. For example, an orange has a$



