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Glossary

Entropy Measure of uncertainty or unpredictability.
Grammar A set of rules about how to generate a sequence of
items.

Medial temporal lobe Brain structure consisting of the
hippocampus and entorhinal, perirhinal, and
parahippocampal cortices.

Statistical learning refers to the ability to extract regularities
from the environment over time. Sensitivity to environmental
statistics is a pervasive property of the brain that operates over
ontogenetic (Berkes, Orban, Lengyel, & Fiser, 2011; Li, Piech, &
Gilbert, 2004) and phylogenetic (Purves, Wojtach, & Lotto,
2011; Simoncelli & Olshausen, 2001) timescales. However,
the term ‘statistical learning’ is often used in contexts in
which learning is rapid - on the order of minutes (Aslin &
Newport, 2012; Saffran, Aslin, & Newport, 1996; Thiessen,
Kronstein, & Hufnagle, 2013). In addition, we will use this
term to refer to automatic and implicit forms of learning, as
opposed to conscious or intentional discovery of regularities
(Destrebecqz & Cleeremans, 2001). There are other uses of this
term, such as in computer science (Vapnik, 1998), which are
related but not the focus of this article.

As implied by the broad meaning of this term, statistical
learning is a ubiquitous process that manifests in multiple
aspects of behavior. Studies of statistical learning have relied
on many different types of dependent measures, such as
recognition of regularities (e.g., Fiser & Aslin, 2001; Reber,
1967), facilitated response times for predictable stimuli (e.g.,
Kim, Seitz, Feenstra, & Shams, 2009; Nissen & Bullemer,
1987), and guidance of attention based on learned
associations (e.g., Chun & Jiang, 1998; Kidd, Piantadosi, &
Aslin, 2012; Zhao, Al-Aidroos, & Turk-Browne, 2013). In
addition, statistical learning can operate over many different
modalities and types of stimuli, including syllables (Saffran
et al., 1996), nonlinguistic sounds (Gebhart, Newport, &
Aslin, 2009), shapes (Fiser & Aslin, 2001), scenes (Brady &
Oliva, 2008), tactile stimuli (Conway & Christiansen, 2005),
and spatial locations (Mayr, 1996). Finally, such learning
takes place throughout the life span, from infants (Kirkham,
Slemmer, & Johnson, 2002; Saffran et al., 1996) to older
adults (Campbell, Zimerman, Healey, Lee, & Hasher, 2012;
Schapiro, Gregory, Landau, McCloskey, & Turk-Browne,
2014). This article will review the current understanding of
how such forms of behavior are supported by the brain, as
well as the insights that these neural investigations have
provided about the nature of statistical learning.

Regularities Recurring patterns in sensory input over time.
Segmentation Process of breaking up continuous
information into components.

Striatum Brain structure in the basal ganglia that includes
the caudate nucleus and putamen.

Transition probability Likelihood that one item occurs
immediately after another in a sequence.

Paired-Associate Learning

Some of the first evidence for how the brain might learn new
regularities came from monkey physiology studies of visual
associative learning. In a seminal study, Miyashita (1988)
found that after viewing a sequence of fractal images presented
many times in the same order, individual neurons in the
macaque temporal lobe came to respond similarly to images
presented nearby in the sequence. This was one of the first
demonstrations that neural selectivity can reflect learned asso-
ciations (as opposed to stimulus features). This led to more
focused studies on how objects become associated, using the
paired-associate task (Figure 1).

In this task, the subject is presented with a cue stimulus,
followed by a delay of a few seconds, and then two choice
stimuli. One of the choice stimuli has been preselected as the
rewarded associate of the cue, and the subject learns by trial
and error to choose this associate. This training has a similar
effect as in Miyashita (1988), leading neurons in the tempo-
ral lobe to respond selectively to both members of a pair
(Sakai & Miyashita, 1991). A later study established a more
direct link between exposure to regularities and neural
changes by examining the timecourse, rather than just the
end point, of learning (Messinger, Squire, Zola, & Albright,
2001). These increases in neural similarity can occur even if
one of the paired stimuli is task-irrelevant and the learning is
thus incidental (Erickson & Desimone, 1999). In fact, such
associative learning can occur merely as a result of eye move-
ments between stimuli (Li & DiCarlo, 2008).

Initially, the neurons undergoing such change were thought
to be located in area TE of the macaque anterior inferior
temporal (IT) cortex, and indeed, this area does seem to par-
ticipate in learning (e.g., Li & DiCarlo, 2008). However, an
adjacent area of the medial temporal lobe (MTL) - perirhinal
cortex (PRC) - contains a higher proportion of pair-coding
neurons (Naya, Yoshida, & Miyashita, 2003). Indeed, learning
occurs more rapidly in PRC than in IT (Naya, Yoshida, &
Miyashita, 2001) and PRC is necessary for effects to appear in
IT (Buckley & Gaffan, 1998; Higuchi & Miyashita, 1996).
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Paired-associate learning. (a) Examples of paired fractal stimuli. (b) Lateral view of macaque brain displaying the ventral visual processing

stream. A36 is part of PRC. (c) An example neuron that responds optimally to a particular fractal and very strongly to that fractal’s pair but not to
any other fractals, demonstrating associative learning. The raster plot, top, shows action potentials on separate trials, and the lines, below, are
average neural firing rates across trials. Adapted with permission from Osada, T., Adachi, Y., Kimura, H. M., & Miyashita, Y. (2008). Towards
understanding of the cortical network underlying associative memory. Philosophical Transactions of the Royal Society of London, Series B:

Biological Sciences, 363, 2187-2199.

Studies of associative learning in nonhuman primates have
guided research on statistical learning in the human brain by
showing that exposure to temporally structured information
leads to rapid changes in neural selectivity (e.g., Messinger
et al., 2001) and by suggesting that the MTL may be a partic-
ularly relevant brain system (e.g., Osada, Adachi, Kimura, &
Miyashita, 2008; Wirth et al., 2003).

Segmentation of Continuous Streams

Unlike the paired-associate task, in naturalistic settings, it is
often unclear which objects should be associated. The world is
noisy and continuous - there is rarely temporal separation
between groups of objects or other obvious cues that indicate
boundaries. For example, we learn which syllables go together
to form words, despite the fact that there are often no clear
pauses between adjacent syllables from different words (Kuhl,
2004). In order to extract meaningful chunks of structure from
a continuous stream, it is therefore necessary to pick up on the
statistical relationships between objects.

In an initial demonstration of this ability, Saffran et al.
(1996) exposed infants to a continuous stream of syllables
that lasted only two minutes. Critically, the order of the syllables
was generated from four groups of three syllables, or ‘words.’
The syllables within a word always appeared in the same
sequence, but the order of words was random. As a result, the
transition probabilities between syllables within words (1.0)
were higher than between words (0.33). In a subsequent test
using a preferential attention procedure, infants showed that
they were sensitive to these statistics by discriminating between
words and recombinations of the same syllables. This canonical
demonstration of statistical learning provided a possible mech-
anism for identifying words during language acquisition.

A handful of functional magnetic resonance imaging (fMRI)
studies have investigated the neural basis of this kind of auditory
statistical learning. One key region is the superior temporal
gyrus (STG), whose activation distinguishes between syllable
sequences with regularities relative to random sequences
(Karuza et al., 2013; McNealy, Mazziotta, & Dapretto, 2006).

The STG, which is involved in auditory perception and speech
processing (Hickok & Poeppel, 2007), has been implicated
more broadly in the extraction of auditory regularities (Cunillera
et al., 2009; Overath et al., 2007). Another important region is
the inferior frontal gyrus (IFG), whose activation seems to track
the expression of auditory statistical learning in behavior
(Karuza et al., 2013; see also Abla & Okanoya, 2008). The
precise functions of these regions and how they interact to
support statistical learning are active areas of research.

The need to segment continuous input into meaningful
chunks extends to the visual domain. Visual information is
highly structured over space and time, allowing us to construct
representations of scenes and events. Such visual statistical
learning has been investigated with variants of the Saffran
et al. (1996) task, in which regularities are constructed
from stimuli such as shapes (Fiser & Aslin, 2002), colors
(Turk-Browne, Isola, Scholl, & Treat, 2008), scenes (Brady &
Oliva, 2008), and actions (Baldwin, Andersson, Saffran, &
Meyer, 2008).

Initial fMRI studies showed that visual statistical learning
occurs quickly within a few repetitions of regularities and
recruits known memory systems, including the MTL and stria-
tum (Turk-Browne, Scholl, Chun, & Johnson, 2009). The MTL,
and hippocampus in particular, is especially engaged by regu-
larities when they provide a predictive cue about what will
occur next (Turk-Browne, Scholl, Johnson, & Chun, 2010).

Though these studies indicated some involvement of the
MTL, it was not clear exactly what kind of learning might be
occurring there. The paired-associate studies in nonhuman
primates reviewed earlier suggested that the MTL might repre-
sent regularities by increasing the similarity of neural represen-
tations of associated objects. Schapiro, Kustner, and Turk-
Browne (2012) investigated such representational changes in
the human brain using a statistical learning paradigm in which
pairs of abstract objects were embedded in a continuous stream
(Figure 2). The pattern of activity evoked by each object was
measured before and after exposure to these regularities with
high-resolution fMRI, and the similarity of these patterns was
examined in the MTL. Both cortical and hippocampal subre-
gions showed increased similarity for objects that had been
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Figure 2 Design and results from Schapiro et al. (2012). (a) Participants were exposed to a continuous sequence generated from pairs of abstract
stimuli. (b) Before and after this exposure, stimuli were presented in a random order, and the pattern of activity evoked by each stimulus was measured
within regions of interest in the MTL. Correlations were calculated for the patterns corresponding to the members of a pair and for recombinations
of the same stimuli (shuffled pairs). (c) From before to after learning, pattern similarity increased throughout much of the MTL cortex and hippocampus
for pairs, but not shuffled pairs. PHC, parahippocampal cortex; ERC, entorhinal cortex; PRC, perirhinal cortex; SUB, subiculum; CA1, cornu

ammonis field 1; CA2/3/DG, cornu ammonis fields 2 and 3 and dentate gyrus. Adapted with permission from Schapiro, A. C., Kustner, L. V., &
Turk-Browne, N. B. (2012). Shaping of object representations in the human medial temporal lobe based on temporal regularities. Current Biology.

paired. Moreover, in the CA3 subfield, the first object in a pair
changed more than the second, consistent with this region
playing a role in prediction.

Beyond fMRI studies, converging support for the role of the
MTL in statistical learning comes from patient work. In partic-
ular, a case study of a patient with complete bilateral hippo-
campal loss revealed widespread deficits in statistical learning
across a range of visual and auditory stimuli (Schapiro et al.,
2014). This suggests that although prior studies of auditory
statistical learning have not focused on the MTL, it may never-
theless play a domain-general role. In fact, this may also be true
about some of the regions implicated in auditory statistical
learning. For example, the IFG also supports visual statistical
learning: Its response to regularities correlates with later behav-
ioral familiarity (Turk-Browne et al., 2009), and it shows anal-
ogous representational changes to what was found in the MTL
(Schapiro, Rogers, Cordova, Turk-Browne, & Botvinick, 2013).

More Complex Statistical Structure

The previous section focused on the extraction of reliable
groupings of stimuli in the service of segmenting continuous
streams. Typically, these groupings are deterministic, with syl-
lables or shapes within a regularity co-occurring with high or
perfect probability. But the contingencies in naturalistic input
can be much more variable, resulting in weaker probabilistic
relationships between stimuli. Many studies have examined
how such contingencies are extracted by exposing participants
to sequences constructed from a complex generative process.

This work tends not to focus on segmentation per se, but rather
on sensitivity to the underlying structure.

Because the relationships in these studies are probabilistic,
any given stimulus will be somewhat associated with multiple
stimuli. This is sometimes conceptualized in terms of a transi-
tion matrix, where each stimulus is indexed by a row and
column, and each cell reflects the probability of transitioning
from the stimulus indexed by the row to the stimulus indexed
by the column. These matrices have been used to quantify the
degree of predictability in a sequence - or the opposite, its
entropy - which can then be used to identify brain systems
sensitive to varying levels of structure. The temporoparietal
junction (TPJ]) is engaged at times of low predictability in
both visual (Bischoff-Grethe, Proper, Mao, Daniels, & Berns,
2000) and auditory (Furl et al., 2011; see also Nastase,
lacovella, & Hasson, 2013) modalities; this may reflect
reorienting to unexpected stimuli, especially in the right
hemisphere (Corbetta, Patel, & Shulman, 2008). Consistent
with the studies in the previous section, the MTL is engaged
by sequences with high predictability (Durrant, Cairney, &
Lewis, 2012); interestingly, the MTL is less involved, and the
striatum more involved, after a period of consolidation.

A related paradigm known as artificial grammar learning
uses finite-state automata to generate structured sequences
(Reber, 1967). These grammars have start and end states, and
each sequence can be presented simultaneously as a string
(Figure 3). After exposure to several of these strings, partici-
pants are able to discriminate between new test strings that are
consistent versus inconsistent with the grammar. These gram-
maticality judgments can be based either on similarity to
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Figure 3 Artificial grammar learning. (a) Grammar used to generate
sequences of strings in Lieberman, Chang, Chiao, Bookheimer, and
Knowlton (2004). Generation of a string begins at IN, and at every
transition from one state to the next, the letter corresponding to the
arrow between states is added to the string. Examples of grammatical
strings are shown. (b) Hippocampal activation (left) is associated

with grammaticality judgments based on the similarity of test strings to
training strings, whereas caudate activation (right) is associated with
judgments that require sensitivity to the rules of the grammar. Adapted
with permission from Lieberman, M. D., Chang, G. Y., Chiao, J.,
Bookheimer, S. Y., & Knowlton, B. J. (2004). An event-related fMRI study
of artificial grammar learning in a balanced chunk strength design.
Journal of Cognitive Neuroscience, 16, 427-438.

substrings that had been experienced during training, which
seems to be supported by the hippocampus, or on adherence
to the set of rules embodied by the grammar, which seems to
be supported by the striatum and frontal cortex (Channon
et al.,, 2002; Dolan & Fletcher 1999; Lieberman et al., 2004;
Strange, Duggins, Penny, Dolan, & Friston, 2005; see also
Poldrack et al., 2001).

In addition to revealing sensitivity to stimulus predictabil-
ity, a similar transition matrix approach has been used to study
contingencies in the motor domain. In this paradigm, known
as the serial reaction time task (SRIT), participants make a
predetermined response whenever a stimulus appears in a
particular location (Nissen & Bullemer, 1987). Both the hip-
pocampus and striatum are sensitive to different measures of
structure during this task, including entropy, conditional
entropy, and mutual information (Bornstein & Daw, 2012;
Harrison, Duggins, & Friston, 2006; Strange et al., 2005;
Thomas et al., 2004; see also Huettel, Mack, & McCarthy,
2002). The profile of hippocampal responses observed across
these studies suggests that the hippocampus may be making
predictions about possible outcomes, with more widespread
predictions arising at times of higher uncertainty about the
future (Bornstein & Daw, 2012, 2013).

In these SRTT studies, only the current stimulus contributes
information about what will occur next in the sequence. How-
ever, in contexts in which probabilities are weak, it can some-
times be beneficial to consider a longer history of events in
order to better predict the future. This has been tested in
modified versions of the SRIT where both the frequency of
items and frequency of item pairs are equated, forcing partic-
ipants to rely on at least second-order relationships (Reber &
Squire, 1994). Although all forms of the SRIT are thought to
rely on the striatum (Grafton, Hazeltine, & Ivry, 1995; Rauch
etal., 1997; Seidler et al., 2005), the MTL seems to be recruited
for this more complex form in particular (Curran, 1997;
Schendan, Searl, Melrose, & Stern, 2003; Shanks, Channon,
Wilkinson, & Curran, 2006; cf. Reber & Squire, 1994).

Spatial Regularities

The focus of the article so far has been on sequential regular-
ities, but the spatial arrangement of objects is also highly
structured over time (Biederman, Mezzanotte, & Rabinowitz,
1982). For example, every time you visit a building, the layout
of rooms and the configuration of furniture are roughly the
same. The learning of spatial regularities has been studied in a
paradigm analogous to the Saffran et al. (1996) study dis-
cussed earlier in the text, where participants extract recurring
configurations of objects from complex scenes rather than sub-
sequences of objects from a continuous stream (Fiser & Aslin,
2001). Another paradigm, contextual cueing, was designed
specifically to examine the learning of spatial regularities
(Chun &Jiang, 1998). In contextual cueing, participants search
for a target letter in an array of distractors. Unbeknownst to
them, distractor arrays are paired with a consistent target loca-
tion, such that the target can be found more quickly over time.
Learning in this task seems to depend on the MTL, as evidenced
by patient work (Chun & Phelps, 1999; cf. Manns & Squire,
2001) and fMRI studies (Greene, Gross, Elsinger, & Rao, 2007;
Manelis & Reder, 2012; Westerberg, Miller, Reber, Cohen, &
Paller, 2011). This suggests a parallel between statistical learn-
ing in temporal and spatial domains.

Conclusions

Across the diverse statistical learning tasks considered here,
there are two broad classes of brain systems involved. One
class consists of cortical regions, which seem to participate
only in certain forms of statistical learning. The STG is engaged
by sequential regularities in the auditory domain and may
reflect sensory and/or linguistic processes. The IFG is involved
in segmenting sequential regularities in both the auditory and
visual domains and seems to be correlated with behavioral
expressions of learning. Finally, the TPJ responds when
sequential regularities are violated, consistent with its role in
reorienting.

The other class of brain regions consists of specialized
memory systems, which seem to be involved across all of the
paradigms discussed here. The striatum, which is known to be
involved in procedural learning, also contributes to many
forms of statistical learning — even ones that do not involve
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motor responses. Perhaps more surprising, the MTL and hippo-
campus in particular are involved in virtually all types of statis-
tical learning that we considered. This is surprising for two
reasons: First, the hippocampus is specialized for encoding indi-
vidual episodes (McClelland, McNaughton, & O'Reilly, 1995),
and yet statistical learning requires aggregating across multiple
episodes. Second, the hippocampus is known to support declar-
ative memory (Squire, Stark, & Clark, 2004), and yet many of
the forms of learning we reviewed occur incidentally and often
implicitly (e.g., Chun & Phelps, 1999; Destrebecqz & Cleere-
mans, 2001; Kim et al., 2009). These findings are consistent with
the view that computations in the hippocampus can support
multiple types of learning without always resulting in awareness
(Hannula & Greene, 2012; Henke, 2010). Specifically, associa-
tions rapidly formed within the hippocampus via relational
binding may provide the building blocks of statistical learning.

The interactions between these cortical regions and mem-
ory systems during statistical learning remain to be explored.
For example, given the rapid learning ability of the hippocam-
pus, it may play a role in mediating cortical responses to
structure. Regardless, one conclusion that can be drawn at
this stage — based on the repeated observation of the same
brain regions across tasks - is that statistical learning is at
least partly a domain-general process. This explains why statis-
tical learning in one domain influences performance in
another, such as visual segmentation predicting language abil-
ities (Arciuli & Simpson, 2012; Frost, Siegelman, Narkiss, &
Afek, 2013), and suggests that statistical learning is a pervasive
element of cognition.

See also; INTRODUCTION TO ANATOMY AND PHYSIOLOGY:
Auditory Cortex; Basal Ganglia; Topographic Layout of Monkey
Extrastriate Visual Cortex; INTRODUCTION TO CLINICAL BRAIN
MAPPING: Language; INTRODUCTION TO COGNITIVE
NEUROSCIENCE: Category Learning; Familiarity; Neural Correlates of
Motor Skill Acquisition and Consolidation; Neuroimaging Studies of
Reinforcement-Learning; Prediction and Expectation; The Medial
Temporal Lobe and Episodic Memory; Uncertainty; INTRODUCTION
TO METHODS AND MODELING: Multi-voxel Pattern Analysis;
INTRODUCTION TO SYSTEMS: Memory.
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