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Multivariate fMRI pattern analysis
methods make it possible to track how
neural representations change as people
learn, providing new opportunities for
testing theories of learning and memory.

Some recent fMRI results fit with super-
vised learning theories, which predict
that linking two stimuli to the same
associatewillmake their neural represen-
tations more similar (integration). How-
ever, other fMRI studies have found that
What are the principles that govern whether neural representations move apart
(differentiate) or together (integrate) as a function of learning? According to
supervised learning models that are trained to predict outcomes in the world,
integration should occur when two stimuli predict the same outcome. Numerous
findings support this, but – paradoxically – some recent fMRI studies have found
that pairing different stimuli with the same associate causes differentiation, not
integration. To explain these and related findings, we argue that supervised
learning needs to be supplemented with unsupervised learning that is driven
by spreading activation in a U-shaped way, such that inactive memories are
not modified, moderate activation of memories causesweakening (leading to dif-
ferentiation), and higher activation causes strengthening (leading to integration).
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Understanding Representational Change
How do stored memories change as a function of experience? The neural representations of past
events can get stronger or weaker individually, but can also change with respect to each other,
with neural overlap either decreasing (differentiation) or increasing (integration). These changes
to the similarity structure of memories have an enormous effect on subsequent retrieval, affecting
how much memories compete (less overlap results in less competition and thus better recall of
distinctive features [1]) and how much generalization occurs (more overlap leads to more gener-
alization [2]).

Here we address two fundamental, interrelated questions: (i) What are the learning rules that gov-
ern how representations change in the brain? and (ii) according to these rules, which situations
lead to differentiation versus integration? These questions have come to the forefront of learning
and memory research in recent years, driven by new, multivariate functional magnetic resonance
imaging (fMRI) analysis methods that make it possible to track how neural similarity structure
changes with learning [3]. These new representational similarity analysis (see Glossary)
methods [4] have led to a wealth of new fMRI results that have proven to be highly constraining
about underlying learning mechanisms. Some of these new results are well explained by classic
supervised learning models, which posit that the brain adjusts representations to predict out-
comes in the world [5,6]. Consistent with these theories, such studies find integration when two
stimuli predict the same outcome and differentiation when two stimuli predict different outcomes
(e.g., [7–9]). However, contrary to these findings, other fMRI studies have found that linking two
stimuli to the same associate leads to differentiation rather than integration [10–12].

What do these seemingly contradictory findings tell us about the underlying neural learning rules?
We argue that explaining representational change requires supplementing supervised learning
rules with unsupervised learning rules that adjust neural representations based on how
strongly memories are activated during the retrieval process. Furthermore, we argue that the
function relating memory activation to learning is U-shaped, such that inactive memories are
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Glossary
Adaptive design optimization:
methods that change the design of an
experiment on-line (i.e., during the
experiment) to better estimate quantities
of interest.
Representational similarity analysis:
a form of fMRI data analysis that involves
comparing the spatial patterns of brain
activity evoked by different stimuli or
conditions; it is typically done within a
particular brain region of interest. This
kind of analysis can tell us whether
stimulus-evoked brain patterns in a
given brain region are becoming more or
less similar with learning.
Supervised learning: learning rules
that adjust connections between
neurons based on an externally-
specified teaching signal. This can
involve an actual teacher specifying the
correct answer, or – more simply –
learning to predict sensory observations
(in effect, using the world as a teacher).
Unsupervised learning: learning rules
that adjust connections between
neurons without leveraging an
externally-specified teaching signal.
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not modified, moderately activated memories are weakened, and highly activated memories are
strengthened.

Supervised Learning and Representational Change
As noted earlier, a very influential account of representational change is supervised, error-driven
learning. According to this view, the goal of learning is to minimize prediction error: the discrep-
ancy between predicted and actual outcomes in the world. This idea has been instantiated in
models that apply error-driven learning algorithms (e.g., error backpropagation [5]) to multilayer
(‘deep’) neural networks. These models have experienced a resurgence of popularity in recent
years as a result of successful applications to large-scale problems in artificial intelligence (AI)
(e.g., computer vision [13]) and neuroscience (e.g., modeling the ventral visual stream [14,15]).
Substantial progress has also been made in considering how these algorithms could be imple-
mented in the brain [16–21].

Supervised learning models adaptively re-represent the input patterns in hidden layers of the net-
work (between the input and output layers) to facilitate mapping from inputs to outputs. Learning
rules like backpropagation adjust connection strengths throughout the network to minimize pre-
diction error in the output layer. These adjustments can have the effect of changing the similarity
structure of hidden layer patterns evoked by inputs, pushing them together or pulling them apart.
In these models, if two inputs map onto the same output, error-driven learning pushes hidden
layer representations of the inputs together; if the inputs map onto different outputs, error-
driven learning pulls their hidden representations apart [6] (Box 1). Importantly, these representa-
tional changes are incremental in nature. The effect of supervised learning is to adjust hidden layer
representations just enough to support accurate prediction, which requires sensitivity to both
similarities and differences in what the inputs predict [22].

A key feature of supervised learning is its asymmetry. In these models, learning to predict distinct
outputs (e.g., two different-looking faces) from similar inputs (e.g., two similar-looking scenes)
yields different representational change effects than the opposite (learning to predict similar
scenes from distinct faces). As such, when testing the predictions of supervised learning models
on actual experimental data, it is important to identify which part of the experimental design
Box 1. How Supervised Learning Leads to Differentiation and Integration

Supervised neural network learning algorithms adjust connections between units based on the difference between a prediction phase (where an input is presented to the
network and activity spreads to the output layer) and an outcome phase (where the ‘correct’ output is presented to the network). Figure I depicts a three-layer,
feedforward network (i.e., activation flows unidirectionally from input to output) that learns using backpropagation [5] to map inputs to outputs via a hidden layer.

In this example, the network has already been trained to map A to X; also, A and B start out with overlapping hidden representations (as indicated by strong connections
from both A and B to the middle hidden unit). Now we want to train the network using backpropagation such that either B predicts X (i.e., B and A have the same pre-
dictive consequence) or B predicts Y (i.e., B and A have different predictive consequences). When B is presented to the network during the prediction phase, X becomes
partially active on the output layer because B activates some of the same hidden units that A previously activated, which (in turn) had been previously linked to X. During
the outcome phase, the correct output (either X or Y) is activated; learning is based on difference between output layer activity in the prediction and outcome phase.

In the B→ X case (top right), X was activated less in the prediction phase than in the outcome phase. To remedy this, backpropagation strengthens weights from active
hidden units to X and also from the B input to the active hidden units that are most strongly connected to X (and thus are in the best position to boost X's activation). The
result of this learning is to increase the extent to which A and B project to the same hidden units. In the B → Y case (bottom right), X was activated too strongly in the
prediction phase and Y was not strongly activated enough. To remedy this, backpropagation strengthens weights from active hidden units to Y, reduces weights from
active hidden units to X, and also weakens weights fromB to the active hidden units that are most strongly connected to X (and thus are most strongly ‘responsible’ for X
being overactivated). The result of this learning is to reduce the extent to which A and B project to the same hidden units.

Importantly, these predictions about differentiation and integration are not limited to the feedforward architecture shown here – the predictions generalize to recurrent
supervised learning algorithms that allow activation to spread in both directions. Several recurrent algorithms have been shown to mathematically approximate
feedforward backpropagation [17,20], and thus the same learning outcomes should occur.
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Figure I. Illustration of Supervised Learning Effects.
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corresponds to the input (i.e., the cue that triggers the prediction) and which part corresponds to
the output (i.e., what is being predicted). Sometimes this is straightforward (e.g., in paired-
associate learning paradigms where participants are given a cue and asked to recall an associate)
and sometimes less so (e.g., when to-be-associated items are presented simultaneously – in this
case, participants could implicitly generate predictions by taking either one of the paired associ-
ates and trying to retrieve the other).

Numerous fMRI results support the predictions of supervised learning models about representa-
tional change. For example, one study [9] found that training participants to predict a shared
scene associate from object cues (by making them imagine the object in that scene) results in
728 Trends in Cognitive Sciences, September 2019, Vol. 23, No. 9
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integration (see also [23,24]). Supervised learning also explains how community structure
affected neural representations in another study [7]. Participants viewed a sequence of arbitrary
symbols, where symbols in the same community tended to transition to each other more than
to symbols in other communities; neural representations of symbols within communities inte-
grated, relative to symbols across communities, in both the cortex and the hippocampus [7,8].
Neural network models using supervised, error-driven learning (where each stimulus was used
to predict the next) were able to simulate these results [7,25].

Data That Challenge Supervised Learning
Recently, a series of fMRI studies have challenged the supervised learning account of represen-
tational change, by showing that linking memories to the same associate can sometimes lead to
differentiation [10–12,26]. For example, when participants were trained to predict the same face
in response to two similar scenes (e.g., two pictures of barns), this led to differentiation of the hip-
pocampal representations of the scenes, to the point where the two scenes became less neurally
similar to each other than they were to unrelated stimuli (e.g., two barns ended up as less neurally
similar than a barn and a bridge) [10]. Intriguingly, this effect may vary across brain regions. One
study found that linking two objects to a common associate can lead to differentiation of the ob-
jects’ representations in right posterior hippocampus and integration in left medial prefrontal cor-
tex (mPFC) [11] (Figure 1). Another study looked at the effects of presenting objects in the same
episodic context (a video of a ‘walkthrough’ of a house) versus a different context, and found in-
tegration in one subfield of the hippocampus (CA1) but differentiation in another (CA2/3/DG) [12].

Importantly, these differentiation effects cannot simply be explained in terms of hippocampal pat-
tern separation – the automatic bias for hippocampus to represent stimuli in a relatively orthogo-
nalized way, driven by sparse coding [27–30]. One reason is that differentiation in the previously
mentioned studies does not occur automatically, but rather only in response to the demand of
learning a shared associate. Furthermore, as noted in several recent papers [10,31,32], these dif-
ferentiation effects in some cases go beyond pattern separation. Orthogonalization implies that all
items should have the same (low) overlap, but in [10] visually similar scenes linked to the same
face had lower levels of hippocampal pattern similarity than visually dissimilar scenes (see also
[31]). Lastly, whereas differentiation has often been reported in the hippocampus, it has also
been observed in other regions [e.g., anterior mPFC and bilateral inferior frontal gyrus (IFG)] [11].

The aforementioned studies provide a particularly stark challenge to supervised learning models.
However, it is not hard to find other memory results that pose a challenge for these supervised
learning models hiding in plain sight. One example is the testing effect: the finding that success-
fully retrieving a memory in the absence of feedback leads to superior recall, compared with sim-
ply restudying the material [33–37]. For example, say that you learn the word pair ‘absence-
hollow’; later, you are given ‘absence-’ and you retrieve the associated word (‘hollow’) without
feedback. From the perspective of supervised learning, one could interpret retrieval of ‘hollow’
as a prediction that is not matched by the world (because of the lack of feedback), so we might
expect weakening of the memory based on this prediction error. Alternatively, one could argue
that ‘hollow’ does not really constitute a prediction about what will happen in the world (since par-
ticipants do not expect feedback), and hence there will be no prediction error and thus no learn-
ing. Crucially, neither of these scenarios explains why retrieval of ‘hollow’ is a strongly positive
(reinforcing) learning experience, as has been demonstrated by myriad studies [35].

Unsupervised Learning and Representational Change
How can we explain the mix of findings described earlier? Supervised learning is too useful to dis-
card – the vast majority of the recent successes of neural network research, in both AI and
Trends in Cognitive Sciences, September 2019, Vol. 23, No. 9 729
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Figure 1. Linking Stimuli to a Shared Associate Can Lead to Differentiation. (A) A recent fMRI study by Favila et al. [10] used pairs of similar scenes (e.g., two barns)
as stimuli. Participantswere shown scenes as cues and trained to predict faces. Specifically, participants associated each scene in a pair with a different face, the same face, or
no face. Representational similarity was measured using a ‘scene pair difference score’: neural similarity between stimuli in the same pair (e.g., two barns), compared with
stimuli in different pairs (e.g., a barn and a bridge). According to supervised learning models, stimuli with similar predictive consequences (i.e., same face scenes) should
integrate [6]. However, in the hippocampus, pairmates in the same face condition showed differentiation rather than integration. Adapted from [10]. (B) In a related fMRI
study by Schlichting et al. [11], participants encoded object pairs (e.g., AB, BC, DE, EF) such that some objects (A and C) were indirectly linked by a shared associate (B).
Some related pairs were learned in a blocked fashion (all AB before any BC), whereas others were learned in an interleaved fashion. The key question was how linking to a
shared associate affected the neural similarity of A and C, relative to baseline pairs that were not linked by a shared associate. The analysis focused on hippocampus, medial
prefrontal cortex (mPFC), and inferior frontal gyrus (IFG). Within these regions of interest, some areas (colored blue in the figure) showed differentiation for both blocked and
interleaved training (e.g., right posterior hippocampus; note that this differentiation effect was referred to as ‘separation’ in the original paper). Others (colored red) showed
integration for both blocked and interleaved training (e.g., left mPFC). Still others (colored green) showed integration for blocked training and differentiation for interleaved
training (e.g., right anterior hippocampus). Abbreviations: L, left; LH/RH, left/right hemisphere; x, y, and z coordinates, the plane of the brain slice. Adapted from [11].
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neuroscience, depend on the ability to learn arbitrary input–output mappings via supervised
learning [13]. Thus, rather than replacing it, we propose that supervised learning needs to be sup-
plemented with other learning principles.
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One particularly relevant set of learning principles is the class of unsupervised neural learning
rules. These rules adjust synaptic connections throughout a network based on information that
is local to the synapse (typically, the activation of the presynaptic and postsynaptic neurons), with-
out any explicit consideration of how well the network is predicting external outcomes. The sim-
plest form of unsupervised learning is the classic Hebbian rule (‘fire together wire together’), which
specifies that correlated firing of the presynaptic and postsynaptic neurons leads to synaptic
strengthening [38,39]. This rule plays an important role in classic models of hippocampal contri-
butions to memory (e.g., [27]). At the level of neural representations, this Hebbian rule predicts
that correlated neural firing will lead to integration [40,41], even in the absence of explicit teaching
signals [42–44]. There is substantial empirical support for this prediction. For example, in mon-
keys, increasing the correlation of inputs from the hand by surgically connecting the skin of two
fingers eliminated the discontinuity between neural zones representing adjacent digits, indicating
that correlated activity boosts neural similarity [45].

This simple Hebbian learning principle can also explain some findings that are challenging for su-
pervised learning. For example, it can easily explain why retrieval of an association (e.g., retrieving
‘hollow’ from the cue ‘absence-’) reinforces that memory. With Hebbian learning, coactivity of the
representations of the cue and the associate leads to strengthening of the connection between
them. Importantly, however, Hebbian learning cannot straightforwardly account for the findings
reviewed previously of increased differentiation for two stimuli linked to a shared associate –

this should make the neurons in their representations ‘fire together’ more, leading to integration,
not differentiation.

A more sophisticated form of unsupervised learning might do better. In particular, several learning
rules have been described with the property that no learning occurs when memories are inactive,
weakening occurs when memories are moderately activated, and strengthening occurs when
memories are highly activated – most prominently, the Bienenstock–Cooper–Munro (BCM)
Box 2. The Nonmonotonic Plasticity Hypothesis (NMPH)

Figure IA illustrates the basic form of the nonmonotonic plasticity hypothesis (NMPH): low activation causes no learning, moderate activation causes weakening of syn-
aptic connections, and higher levels of activation cause strengthening of synaptic connections. The most prominent computational instantiations of the NMPH
(e.g., [46,87]) also incorporate metaplasticity, whereby the ‘transition point’ between strengthening and weakening is adjusted as a function of the average activity of
the neuron; high average activity makes it easier to weaken connections into the neuron, and low average activity makes it easier to strengthen connections. This
metaplasticity principle is well supported by neural data [53]; functionally, it is important for preventing runaway synaptic modification (whereby strong connections keep
getting stronger).

Figure IB illustrates U-shaped plasticity in rats (adapted from [88]). Neurons in brain slices from rat visual cortex were stimulated at varying frequencies, then the slices
were analyzed for long-term depression or long-term potentiation. Lower frequency stimulation produced long-term depression whereas higher frequency stimulation
produced long-term potentiation.

There is also evidence of the U-shaped function in studies with humans using EEG and fMRI, showing that the NMPH scales beyond the synapse to account for
human behavior. For example (Figure IC), these effects were seen in a negative priming study [50] where participants had to ignore perceptual distractors and then
respond to them later. In this study, to-be-attended targets and to-be-ignored distractors came from different categories (e.g., face, scene), making it possible to
track processing of the distractor using category-specific EEG pattern classifiers. Moderate levels of distractor processing were associated with negative priming
(slower subsequent responding to the stimulus), but higher and lower levels of distractor processing were not associated with negative priming. Adapted
from [50].

As another example (Figure ID), a study [49] obtained evidence for the NMPH in paired-associate learning, using a variant of the think/no-think paradigm [89].
Participants learned paired associates; later, they were given the cue (the first item in the pair) and asked not to think of the associated item. Moderate activation of
the ‘no-think’ associate during the no-think trial (measured using an fMRI pattern classifier) led to diminished performance on a subsequent memory test, whereas higher
activation led to enhanced performance on a subsequent memory test (adapted from [49]; the gray ribbon in the figure indicates the 90% credible interval, meaning that
90% of the probability mass of the curve distribution is contained within the interval). The relationship between memory activation and (subsequent) change in memory
strength was estimated using the Probabilistic Curve Induction and Testing (P-CIT) algorithm, described in Box 4. Note that several other fMRI studies using different
paradigms have obtained similar U-shaped results [54–56].

Trends in Cognitive Sciences, September 2019, Vol. 23, No. 9 731
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Figure I. Data Supporting the Nonmonotonic Plasticity Hypothesis.
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learning rule [46,47], but also others [1,48]. We refer to the ‘U-shaped’ learning function shared by
all of these rules as the nonmonotonic plasticity hypothesis (NMPH) [49,50]. The NMPH is sup-
ported by neurophysiological data showing that moderate postsynaptic depolarization leads to
long-term depression (synaptic weakening) and stronger depolarization leads to long-term
potentiation (synaptic strengthening) [51–53]. Furthermore, recent studies in humans show that
the NMPH ‘scales up’ to explain human behavioral and neural data. Moderate activation of
memories [measured using multivariate fMRI or electroencephalography (EEG)] is associated
with subsequent forgetting of those memories and higher activation is associated with subse-
quent improvements in memory (e.g., [49,50,54–56]) (Box 2).

A useful way to think of the NMPH in relation to supervised learning is to focus on where the learn-
ing ‘targets’ come from. Supervised learning adapts synaptic weights so activation patterns in the
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network match explicit targets supplied directly by the environment. With the NMPH, the spread
of activation throughout the network sets the targets. Weights are adapted to reinforce strongly
activated patterns and to destabilize moderately activated patterns, at all layers of the network.
In this framework, strongly activated memories (e.g., retrieving ‘hollow’ from the cue ‘absence-’)
can be viewed as internally generated targets for learning.

How the NMPH Accounts for Representational Change
In addition to explaining how memories get stronger and weaker, the NMPH also makes detailed
predictions about representational change [1,57]. When one memory is strongly activated and an
overlapping memory is moderately activated at the same time, the NMPH predicts that connec-
tions from the strongly active memory to the moderately activated memory will be weakened,
leading to differentiation; but when the overlapping memory is strongly activated, connections
will be strengthened, leading to integration [57] (Figure 2, Key Figure). The functional significance
of these changes is to reduce competition on subsequent retrieval attempts. This happens re-
gardless of whether learningmanifests as differentiation or integration – both reduce competition,
by transforming a situation with two competing memories to either a situation with one memory
(integration) or two memories that are farther apart (differentiation). Intuitively, this corresponds
to two ways of preventing kids from fighting – you can make them friends (integration) or you
can separate them (differentiation) [58].

This reduction in competition is also how the NMPH accounts for the testing effect. During re-
trieval, activation spreads to related memories, causing the representational changes outlined
earlier, which reduce competition on subsequent retrieval attempts and thus improve accuracy
[34]. In contrast, during restudy –which improves memory less than retrieval – activation is largely
limited to the restudied memory itself. Intuitively, activation spreads less far during restudy com-
pared with retrieval because the (highly active) restudied item laterally inhibits other memories
(for a neural network model of this phenomenon see [59]). Because activation does not spread
as far, there is less representational change and thus less impact on accuracy. A key prediction
of this account (yet to be tested) is that the size of behavioral testing effects should correlate
with the amount of representational change (e.g., measured with fMRI).

According to the NMPH, when a competing memory comes to mind moderately, it is both differ-
entiated from the more-strongly-activated target memory and also weakened overall, making it
harder to retrieve (insofar as the elements of this memory are now less-strongly interconnected
and provide less mutual support to each other during retrieval). This explains the phenomenon
of retrieval-induced forgetting (RIF), whereby retrieving one memory impairs the subsequent
retrievability of related memories [59–62].

Furthermore, if the competing memory is subsequently restudied (or successfully retrieved,
despite having been weakened), the NMPH posits that the memory will be restrengthened (due
to strong coactivity of the constituent parts of the memory), while staying differentiated from the
target memory. A key implication of this view is that the damaged-then-repaired memory is better
off than before the damage occurred, because it has now been differentiated from the target
memory and will suffer less competition from it. This leads to the prediction that memories that
compete and are then restudied should be better remembered than memories that are merely
restudied without having competed. This is exactly what was observed by [57,63], who termed
this phenomenon ‘reverse RIF’. Moreover, the size of this reversed behavioral effect can be pre-
dicted by the degree of neural differentiation of representations of the competing stimuli in the hip-
pocampus [57]. Another prediction arising from the NMPH is that, in a RIF (or reverse RIF)
paradigm, strong (as opposed to moderate) activation of a competing memory during retrieval
Trends in Cognitive Sciences, September 2019, Vol. 23, No. 9 733
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Figure 2. This figure depicts the same situation as the supervised learning box (Box 1). A hasbeen linked toX, andB has some initial hidden layer overlapwith A. In this network,
activation is allowed to spread bidirectionally. When B is presented along with X (corresponding to a B–X study trial), activation can spread downward from X to the hidden layer
units associated with A, and also – from there – to the input-layer representation of A. If activation spreads strongly to the input and hidden representations of A, integration of
A and B occurs due to strengthening of connections between all of the strongly-activated features (top-right panel: green connections indicate strengthened weights;
A–B integration can be seen by noting the increase in the number of hidden units receiving projections from both A and B). If activation spreads only moderately to the input
and hidden representations of A, differentiation of A and B occurs due to weakening of connections between the moderately activated features of A and the strongly
activated features of B (middle-right panel: green and red connections indicate weights that are strengthened and weakened, respectively; A–B differentiation can be seen
by noting the decrease in the number of hidden units receiving strong connections from both A and B – in particular, the middle hidden unit no longer receives a strong
connection from A). If activation does not spread to the features of A, then neither integration nor differentiation occurs (bottom-right panel).
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should lead to integration of that memory with the retrieved memory, boosting its later accessibility.
This has not been tested with fMRI, but behavioral evidence fits this prediction (e.g., [64]); see also
[65] for related fMRI evidence from an associative inference paradigm.

Two recent studies of statistical learning [55,66] provide additional support for the NMPH. In
these studies, participants viewed a stream of stimuli with embedded regularities (e.g., scene A
was regularly followed by scene B), which were later violated (e.g., scene A was followed by
face X instead of scene B). Moderate activation of the predicted scene (B) in the brain at the mo-
ment the prediction was violated led to impaired subsequent memory for B [55]. In a follow-up
study [66], B was restudied after the violation; the same circumstance that led to forgetting before
(moderate activation of scene B when A was unexpectedly followed by X) was associated here
with neural differentiation of the hippocampal representations of A and B. This fits with the idea
that moderate activation of B that co-occurs with strong activation of A leads to ‘shearing’ of
B’s connections with A (for an alternative explanation see [67]; for a related result see ‘weak
pairs’ in [68]). Note that these statistical learning findings could also potentially be explained by
supervised learning (i.e., weakening of an incorrect prediction). The place where NMPH learning
diverges from supervised learning is when presenting a cue triggers very strong anticipatory
activation of the predicted item and the prediction is violated. The NMPH posits that – in this
case – integration of the cue and predicted item will occur, boosting the association, whereas
supervised learning predicts that the association will be weakened (due to the large prediction
error). In cases like this (where supervised learning and the NMPH make opposite predictions),
the overall learning outcome will depend on the balance between supervised and unsupervised
learning (see ‘Balancing Supervised and Unsupervised Learning’ section later).

Crucially, the NMPH can also explain the challenging data discussed earlier from [10,11], where
linking two items to a common associate caused differentiation in some brain regions (e.g., the
hippocampus); for related findings see [12,31]. In this situation, linking the items to a shared
associate provides an additional conduit for activation to spread from one item to the other. If
the baseline level of spreading activation was low, linking to a shared associate may push spread-
ing activation to moderate levels, which would (according to the NMPH) lead to differentiation.
Box 3. How the NMPH Explains Findings That Challenge Supervised Learning

Figure IA shows how the NMPH can explain the hippocampal differentiation results from Favila et al. [10].

The network diagrams show the state of the network after scene A has been associated with face X, during a trial in which scene B is being linked either to face Y
(different face condition) or face X (same face condition). In the different face condition, we assume that the level of activation spreading from scene B to its pairmate
(A) in the hippocampus is relatively low. In the same face condition, the strengthened connection between X and A provides a conduit for activation to spread back down
to A, resulting in A’s representation becoming moderately active; this leads to differentiation of A and B, via the mechanisms shown in Figure 2 in main text.

To account for the results from Schlichting et al. [11], we use the same logic (Figure IB). The only extra dimension is how to account for the blocked versus interleaved
training manipulation. In the blocked condition, all A–X learning occurs before any B–X trials take place; as such, the association between X and A’s hidden represen-
tation will be stronger in the blocked than the interleaved condition. This strengthened A–X connection allows more activation to spread to the representation of A (in the
input and hidden layers) during B–X trials.

As noted earlier, a key feature of the results from [11] is variance across brain regions as to whether integration or differentiation was observed. The NMPH can explain
between-area differences in integration/differentiation in terms of between-area differences in how strongly activation spreads to A during B–X trials. The network
diagrams and the topmost NMPH diagram in Figure IB depict a situation where activation spreads moderately in the interleaved condition and strongly in the blocked
condition; in this situation, we would expect differentiation in the interleaved condition and integration in the blocked condition. Alternatively, if overall levels of activation
are lower in a given area, onemight observe differentiation in both conditions (lower NMPHdiagram), and if levels of activation are higher, onemight observe integration in
both conditions (not shown). This account also predicts that some configurations will not be observed; in particular, if activation is higher in blocked than interleaved,
there is no way to position these conditions along the NMPH curve such that blocked leads to differentiation and interleaved leads to integration. It is therefore notable
that, across the three main regions of interest surveyed by [11] (hippocampus, mPFC, and IFG), all three of the ‘possible’ configurations were observed but the ‘impossible’
configuration was not observed (see Figure 1 in main text).
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However, a key implication of the NMPH is that there are limits on this dynamic; if the other item
activates strongly (instead of moderately), the NMPH predicts that this will lead to integration –

potentially explaining the integration effects observed in some brain regions by [11] (Box 3).

This account highlights a useful property of the NMPH: It can explain qualitative differences
between brain areas (whether they tend to show integration or differentiation) in terms of a con-
tinuous, quantitative difference in how strongly competitors are allowed to come to mind. Specif-
ically, brain areas differ in terms of how tightly excitatory activity is controlled by inhibitory
interneurons (e.g., [69]). According to the NMPH, if it is relatively hard for competitors to come
to mind in a particular area (because of high inhibition), that area will favor differentiation; if it is
relatively easy for competitors to come to mind (because of lower inhibition), that area will favor
integration. The fact that many of the differentiation effects reported in this paper involve the hip-
pocampus may be a consequence of high inhibition and thus sparse activity in the hippocampus
[28,69], which makes it difficult to strongly activate competitors. This view also fits with the
aforementioned finding [12] that – within the hippocampus – subregions with very sparse activity
(CA2/3/DG) [69] tend to show differentiation, whereas subregions with less sparse activity
(CA1) [69] tend to show integration, as well as the finding from [11] that posterior hippocampus
(hypothesized to use sparser neural codes than anterior hippocampus [70]) tends to show differ-
entiation, whereas anterior hippocampus tends to show integration. Another factor that may con-
tribute to differentiation in the hippocampus is that it has a high learning rate compared with
cortical regions [2]. Because of this high learning rate, a single instance of competition may be
enough to repel similar items a large distance apart in representational space, past the ‘baseline’
level of overlap for dissimilar items.

As noted by [11] (see also classic work on complementary learning systems by [2]), having
different areas be differentially biased towards integration versus differentiation confers major
functional benefits. If all brain regions exhibited the same level of bias towards integration or
differentiation, the brain would have to choose whether to (globally) integrate or differentiate
stimuli. Having brain areas with different biases towards integration versus differentiation
(due to different levels of local inhibition) makes it possible to avoid this tradeoff. When multiple
items are linked to a shared associate, some brain regions can integrate the items (to promote
generalization) and other regions can differentiate the items (to ensure that they stay retrievable
as distinct entities).

Testing the NMPH
Going forward, how do we most effectively test the NMPH? A potential criticism is that – because
the NMPH is flexible enough to explain both differentiation and integration – it is not falsifiable.
Consider a pair of experimental conditions (call them X and Y) where memory activation is higher
in condition Y than X. If representations in condition Y show less overlap (on average) than in
condition X, one could explain this post hoc by arguing that X and Y fall on the descending part
of the U-shaped curve (where more activation leads to weakening and differentiation). Likewise,
if representations in condition Y show more overlap than in condition X, one could explain this
post hoc by arguing that X and Y lie on the ascending part of the U-shaped curve (where more
activation leads to strengthening and integration). Indeed, this kind of post hoc theorizing can
be found in Box 3. This would be less of a concern if there were an a priori way of knowing
whether conditions would elicit low, moderate, or high activation (thereby ‘locking down’whether
those conditions should lead to differentiation or integration), but in practice this is hard to do.

As discussed in Box 3, the NMPH cannot explain every possible outcome; however, it still is com-
patible with a wide range of findings, making it challenging to test. The key to robustly testing the
Trends in Cognitive Sciences, September 2019, Vol. 23, No. 9 737
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NMPH account of representational change is to obtain samples from the full ‘x-axis’ of the
U-shaped curve, thereby making it possible to reconstruct the full U-shaped pattern of plasticity
predicted by the NMPH (one approach to testing for this U-shaped pattern is described in Box 4).
Crucially, some results have already been obtained showing a U-shaped relationship between
memory activation and subsequent memory behavior (e.g., [49]) (Box 2), providing support for
the NMPH. However, a similar result has not yet been obtained in studies of representational
change (showing a smooth transition from no representational change, to differentiation, to inte-
gration within a single study) – this is a goal of our ongoing research.

Combining adaptive design optimization methods [71] and real-time fMRI [72] may also be
useful for testing the NMPH. This approach would involve tracking memory activation during
fMRI scanning using real-time decoding [72,73], keeping track of which points on the activation
continuum have been sampled, and adaptively changing the task to better sample regions of
the continuum that have been undersampled. For example, Poppenk and Norman [74] showed
that it is possible to parametrically nudge memory activation levels by varying concurrent distrac-
tion during memory retrieval using a multiple-object tracking task. This suggests an approach
whereby distraction could be increased to better sample lower regions of the activation contin-
uum if memory activation is too high, and decreased to better sample higher regions of the
activation continuum if memory activation is too low. If eliminating distraction during memory
retrieval is not sufficient to elicit strong activation of the memory, another option is to ‘fade in’
the to-be-retrieved stimulus onscreen during retrieval (for a related approach see [75]).

What is the Function of the NMPH?
Our main claim thus far has been that supplementing supervised learning with unsupervised
NMPH learning may help explain data on representational change and retrieval-driven learning.
Here, we revisit the question of why the brain would incorporate NMPH learning. Put another
way, what functional benefits does the NMPH confer when added to supervised learning?
Box 4. Testing for a U-Shaped Curve

How do we assess whether the curve relating neural activation and plasticity has the U shape predicted by the NMPH? It
helps to have multiple experimental conditions, in order to more parametrically sample the activation (x) axis. However,
using multiple conditions may not be sufficient to reconstruct the full U shape; all of the conditions could, for example, fall
on the descending part of the U. Also, even if there are three conditions whose mean activation values correspond to the
left, middle, and right sides of the curve, it might be difficult to reconstruct the U if within-condition variability is large. For
example, if the mean level of activation falls in the dip of the U, but there is variability on either side of the mean, then
strengthening will occur on some trials and no learning on others, diluting the weakening effect.

Given this concern, a better approach is to exploit within-condition variability by taking all of the individual trials (which may
be spread out widely across the x-axis, even if the mean levels of activation per condition are not) and then mapping neural
activation values on those trials to learning outcomes. To accomplish this, we developed the P-CIT (Probabilistic Curve In-
duction and Testing) algorithm [49]. P-CIT takes individual trial data as input and generates (as output) a probability distri-
bution over the space of curves relating neural activation (on the x-axis) to learning outcomes (e.g., changes in pattern
similarity). P-CIT generates this probability distribution by randomly sampling curves (piecewise linear curves with three
segments) and then assigning each curve an importance weight that quantifies how well the curve explains the observed
relationship between neural activation and learning outcomes. Finally, these importance weights are used to compute the
probability of each curve, conditioned on the observed data.

P-CIT can be used in place of simple ‘binning’ methods (i.e., binning trials associated with certain ranges of memory
activation values, and estimating memory outcomes for these bins), which can be sensitive to the number and placement
of the bin boundaries. By estimating the continuous function relating activation to memory outcomes, P-CIT avoids the
need to specify bin boundaries. Another advantage of P-CIT is that it can be used to compute a Bayes factor estimate
of the level of evidence for, versus against, the NMPH [54]. P-CIT curves can be computed on an individual participant
basis or group basis (combining all trials across participants). Thus far, the latter approach has been used, as estimating
these curves on an individual basis requires more data per participant than has been collected in past studies.
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We hypothesize that the need for NMPH learning derives from the problem of competition in
recurrent neural networks, where there are reciprocal interactions between layers. These
networks can exhibit complex settling dynamics before reaching a stable state; if the network
vacillates between nearby states without fully settling in one (as can easily happen in neural net-
work models with noise), this can prevent the system from acting decisively in response to the
current stimulus, with potentially catastrophic consequences. The NMPH could help with this
problem. As noted previously, its primary functional consequence is to reduce competition
on subsequent retrieval attempts, which should lead to both faster and more accurate
responding (because of less vacillation, and a greater likelihood of eventually settling into the
correct state).

At the same time, unsupervised learning has its costs – it can cause networks to become
entrenched in particular knowledge states and make them less able to adapt to new inputs
[43]; also, in pathological cases, it can lead the network to erroneous conclusions – with the
NMPH, strongly retrieving a false memory can further embed that incorrect state. Our conjecture
is that competition is a large enough problem to justify the need for an extra ‘housekeeping’ pro-
cess (implemented by the NMPH) that grooms the attractor landscape to reduce competition.
Specifically, we hypothesize that the potential costs of unsupervised NMPH learning
(e.g., relating to entrenchment) are outweighed by these benefits conferred by that learning
(in terms of reduced competition).

More simulation work is needed to assess whether this hypothesis is true. This question can be
addressed by adapting recurrent neural networks that do not presently incorporate NMPH learn-
ing (e.g., the visual object recognition model described in [76]), and testing whether they benefit
from the addition of the NMPH; for preliminary evidence that this is the case see [77]. These
ideas build on other work describing synergies between supervised and unsupervised learning
[39,78–80], including a recent model of hippocampal learning [81].

Balancing Supervised and Unsupervised Learning
One final, important question is how the brain sets the balance between supervised and unsuper-
vised learning. As noted previously, this question is especially relevant when considering situa-
tions where the NMPH and supervised learning make conflicting predictions. Speculatively, in
light of the idea that NMPH learning serves to reduce competition on future retrieval attempts, it
might be useful to ramp up the influence of NMPH learning (relative to supervised learning)
when competition is persistently high. Accomplishing this requires two things: a means of
adjusting the influence of NMPH learning, and a control mechanism that can detect competition
and trigger changes in the influence of NMPH learning.

With regard to the first issue (how to adjust the contributions of NMPH), one intriguing idea is
that these contributions could be titrated by varying local levels of cortical excitability, for exam-
ple, by varying the amplitude of inhibitory oscillations [1,59]. Lowering the local level of inhibition
allows competing memories that are presently inactive (because inhibition outweighs excita-
tion) to become active; this has the effect of pulling these memories from the far-left side
of the U-shaped curve to the moderate activation region associated with differentiation or
even the high activation region associated with integration. Thus, by increasing the extent to
which competing memories come to mind, larger amplitude oscillations could lead to more
representational change, which would help mitigate competition and boost subsequent
memory. Although existing studies have not directly tested this claim, it is consistent with
data showing that theta oscillation amplitude at encoding predicts subsequent retrieval suc-
cess (e.g., [82–84]).
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Outstanding Questions
Is it possible to observe a transition
from differentiation to integration, as
a function of increasing competitor
activation, within the same study?

What are the most sensitive ways to
measure the behavioral consequences
of neural differentiation and integration?

Does unsupervised, nonmonotonic
learning (implemented in algorithms
like BCM) benefit the overall
performance of recurrent nets by
reducing competition?

What determines the balance between
supervised and unsupervised learning,
and can it be altered?

How does this balance change
over development, given rapid
learning during this period, differential
maturation of brain regions, and
continually changing feedback from
the world (as motor, language, and
cognitive abilities grow)?
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If the brain upregulates NMPH learning by upregulating inhibitory oscillations, what triggers that
change? Under the assumption that NMPH learning should be ramped up when competition is
high, it would make sense to have brain regions that are involved in detecting and resolving re-
trieval competition (e.g., anterior cingulate cortex and ventrolateral PFC [85]) control the strength
of oscillations. Indeed, a possible path for this exists. Ventral prefrontal regions project to the
basal forebrain, which controls the release of acetylcholine, which (in turn) is known to modulate
oscillation strength (for a review see [86]).

Concluding Remarks and Future Directions
Determining when learning leads to differentiation versus integration has been a challenging
undertaking for memory researchers. It is hard to imagine a more fundamental question, and
the fMRI data reported here show that it is a complex business, full of seemingly contradictory ex-
perimental results. We have argued that supplementing supervised learning with nonmonotonic
unsupervised learning helps to explain these divergent findings and a wide range of other learning
phenomena, including the testing effect, (reverse) RIF, and effects of expectation–violation in sta-
tistical learning. Although there is still much more work to be done (see Outstanding Questions),
the research reviewed here shows that the flow of activation through neural networks can pow-
erfully sculpt memories that are activated, strengthening or weakening them, and pushing them
together or pulling them apart, in ways that cannot always be explained by supervised learning.
Now that we have the means to track both memory activation and the resulting representational
change in humans using fMRI, we expect rapid progress in characterizing these unsupervised
learning effects in the years to come.
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