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Associative Prediction of Visual Shape in the Hippocampus
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Perception can be cast as a process of inference, in which bottom-up signals are combined with top-down predictions in sensory systems.
In line with this, neural activity in sensory cortex is strongly modulated by prior expectations. Such top-down predictions often arise from
cross-modal associations, such as when a sound (e.g., bell or bark) leads to an expectation of the visual appearance of the corresponding
object (e.g., bicycle or dog). We hypothesized that the hippocampus, which rapidly learns arbitrary relationships between stimuli over
space and time, may be involved in forming such associative predictions. We exposed male and female human participants to auditory
cues predicting visual shapes, while measuring high-resolution fMRI signals in visual cortex and the hippocampus. Using multivariate
reconstruction methods, we discovered a dissociation between these regions: representations in visual cortex were dominated by which-
ever shape was presented, whereas representations in the hippocampus reflected only which shape was predicted by the cue. The strength
of hippocampal predictions correlated across participants with the amount of expectation-related facilitation in visual cortex. These
findings help bridge the gap between memory and sensory systems in the human brain.
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Introduction
Neural activity in sensory cortex can be strongly modulated by
prior expectations (Summerfield et al., 2008; den Ouden et al.,
2009; Alink et al., 2010; Meyer and Olson, 2011; Todorovic et
al., 2011; Wacongne et al., 2011; Kok et al., 2012, 2013; Bell et
al., 2016; Kaposvari et al., 2016). Most theories of the neural
mechanisms underlying such phenomena focus on low-level,
highly ingrained predictions, such as surround suppression or
filling-in of contours (Lee and Nguyen, 2001; Spratling, 2010;
Kok and De Lange, 2014), which may be represented by down-

stream areas within local brain circuits (Rao and Ballard, 1999;
Spratling, 2010). However, it is unclear how to extend these pro-
posals to more complex, learned predictions. Consider cross-
modal predictions, for example, such as when an auditory
stimulus (e.g., a bell or bark) leads to an expectation of the visual
appearance of the corresponding object (e.g., a bicycle or dog).
Such associations, especially when learned recently, cannot read-
ily be encoded within sensory systems, as visual cortex does not
have direct access to the features of auditory stimuli nor is it able
to rapidly bind these features. Such predictions may instead de-
pend on a higher-order brain region that can rapidly learn mul-
tisensory associations.

Based on this, we hypothesized that the hippocampus plays a
role in such predictions. First, the hippocampus is known to be
involved in learning arbitrary relationships between stimuli (Co-
hen and Eichenbaum, 1993; Davachi, 2006; Turk-Browne et al.,
2009; Henke, 2010; Hsieh et al., 2014; Garvert et al., 2017), par-
ticularly over space and time (Solomon et al., 1986; Wallenstein
et al., 1998; Staresina and Davachi, 2009). In fact, learning of such
relationships is strongly impaired when the hippocampus is dam-
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Significance Statement

The way we perceive the world is to a great extent determined by our prior knowledge. Despite this intimate link between
perception and memory, these two aspects of cognition have mostly been studied in isolation. Here we investigate their interaction
by asking how memory systems that encode and retrieve associations can inform perception. We find that upon hearing a familiar
auditory cue, the hippocampus represents visual information that had previously co-occurred with the cue, even when this
expectation differs from what is currently visible. Furthermore, the strength of this hippocampal expectation correlates with
facilitation of perceptual processing in visual cortex. These findings help bridge the gap between memory and sensory systems in
the human brain.

6888 • The Journal of Neuroscience, August 1, 2018 • 38(31):6888 – 6899



aged (Sutherland et al., 1989; Chun and Phelps, 1999; Hannula et
al., 2006; Konkel et al., 2008; Schapiro et al., 2014). Second, the
hippocampus has bidirectional connections with sensory cortices
of all modalities (Lavenex and Amaral, 2000; Eichenbaum et al.,
2007; Henke, 2010) and has, for this reason, even been considered
the top of sensory hierarchies (Felleman and Van Essen, 1991).
Third, one of the main computational functions of the hip-
pocampus is to retrieve associated items from memory based on
partial information, a process known as pattern completion
(Treves and Rolls, 1994; McClelland et al., 1995; Henke, 2010).
This function has been mostly considered in the context of recall
from episodic memory but is also ideally suited for retrieving
predictions based on contextual cues (McClelland et al., 1995;
Chun and Phelps, 1999; Eichenbaum and Fortin, 2009; Schapiro
et al., 2012; Davachi and DuBrow, 2015; Hindy et al., 2016).
Pattern completion is thought to be subserved by the CA3 sub-
field of the hippocampus, because of its strong recurrent, autoas-
sociative connections (Treves and Rolls, 1994; Henke, 2010;
Schapiro et al., 2017), from whence the retrieved pattern is sent to
CA1, where it may be compared with actual sensory inputs (Lis-
man and Grace, 2005; Chen et al., 2011; Duncan et al., 2012).
These computational mechanisms may allow the hippocampus

to represent expected events, based on predictive cues in the en-
vironment, rather than being dominated by current inputs as in
sensory cortices.

To investigate the involvement of the hippocampus in cross-
modal predictions, we exposed human participants to auditory
tones preceding the appearance of particular visual shapes (Fig.
1), while measuring blood oxygenation level-dependent (BOLD)
signals in both visual cortex and the hippocampus with high-
resolution functional magnetic resonance imaging (fMRI). Using
multivariate pattern analysis and an inverted encoding model
(Fig. 2), we reconstructed which shape was represented in these
brain systems on trials in which the tones validly versus invalidly
predicted what appeared. We hypothesized that the hippocam-
pus would represent the shape expected based on the tones re-
gardless of which shape actually appeared. In contrast, whereas
visual cortex may be modulated by expectation, its representa-
tion should be dominated by the shape presented on screen.

Materials and Methods
Participants. Twenty-five healthy individuals participated in the experi-
ment. All participants were right-handed, were MR compatible, and had
normal or corrected-to-normal vision. Participants provided informed

Figure 1. Experimental paradigm. A, During prediction runs, an auditory cue preceded the presentation of two consecutive shape stimuli. On each trial, the second shape was either identical to
the first or slightly warped with respect to the first along an orthogonal dimension, and participants’ task was to report whether the two shapes were the same or different. B, The auditory cue
(ascending vs descending tones) predicted whether the first shape on that trial would be shape 2 or shape 4 (of 5 shapes). The cue was valid on 75% of trials, whereas in the other 25% of (invalid)
trials the unpredicted shape was presented. C, During shape-only runs, no auditory cues were presented. As in the prediction runs, two shapes were presented on each trial, and participants’ task was
to report same or different. D, All five shapes appeared with equal (20%) likelihood on trials of the shape-only runs.

Figure 2. Illustration of the decoding method. A, We used a forward modeling approach to reconstruct shapes from the pattern of BOLD activity. Shape selectivity was characterized by five
hypothetical channels, each with an idealized shape tuning curve. BOLD patterns obtained from the shape-only runs were used to estimate the weights on the five hypothetical channels separately
for each voxel, using linear regression. B, Using these weights, the second stage of the analysis reconstructed the channel outputs associated with the pattern of activity across voxels evoked by the
prediction runs (only shapes 2 and 4 were used in these runs). Channel outputs were converted to a weighted average of the five basis functions, resulting in neural shape tuning curves. Decoding
performance was quantified by subtracting the amplitude of the shape tuning curve at the presented shape (e.g., shape 2) from the amplitude at the nonpresented shape (e.g., shape 4). C, Finally,
we collapsed across the presented shapes by subtracting the shape tuning curve for shape 4 from that for shape 2, thereby removing any nonshape-specific BOLD signals. Shaded regions in B and
C indicate SEM.
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consent to a protocol approved by the Princeton University Institutional
Review Board and were compensated ($20 per hour). One participant
was excluded from analysis because they moved their head between runs
such that large parts of the occipital lobe were no longer inside the field of
view. The final sample consisted of 24 participants (15 female; age, 23 �
3, mean � SD).

Stimuli. Visual stimuli were generated using MATLAB (Mathworks;
RRID:SCR_001622) and the Psychophysics Toolbox (Brainard, 1997;
RRID:SCR_002881). In the MR scanner, the stimuli were displayed on a
rear-projection screen using a projector (1024 � 768 resolution, 60 Hz
refresh rate) against a uniform gray background. Participants viewed the
visual display through a mirror that was mounted on the head coil. The
visual stimuli consisted of complex shapes defined by radial frequency
components (RFCs) (Zahn and Roskies, 1972; Op de Beeck et al., 2001;
Drucker and Aguirre, 2009; Fig. 1A). The contours of the stimuli were
defined by seven RFCs, based on a subset of the stimuli used by Op de
Beeck et al. (2001; see their Fig. 1a). A one-dimensional shape space was
created by varying the amplitude of three of the seven RFCs. Specifically,
the amplitudes of the 1.11, 1.54, and 4.94 Hz components increased
together, ranging from 0 to 36 (first two components) and from 15.58 to
33.58 (third component). Note that we chose to vary three RFCs simul-
taneously, rather than one, to increase the perceptual (and neural) dis-
criminability of the shapes.

To map out this shape space perceptually, we generated 13 shapes that
spanned the continuum, with the amplitudes of the three modulated
RFCs increasing with equal steps from the minimum to the maximum of
the ranges defined above. Six participants categorized these shapes as one
of the two extremes of the continuum (each shape presented 24 times).
Psychometric curves were fit to these data, and we determined the points
along the continuum (in terms of the amplitudes of the three modulated
RFCs) that were judged as 10, 50, and 90% likely to be the extreme shape
with maximal values. The five shapes we used in the fMRI experiment
consisted of these three experimentally determined points in the space
continuum, as well as the two extremes (Fig. 1A). The participants who
took part in the fMRI experiment were exposed to the same perceptual
categorization experiment after the fMRI session ended, and we deter-
mined that for each participant the chance of classifying a shape as the
maximal extreme increased monotonically as a function of the amplitude
of the three RFCs. During the fMRI experiment, the shapes were pre-
sented centered on fixation (color, black; size, 4.5°). Additionally, a
fourth RFC (the 3.18 Hz component) was used to create slightly warped
versions of the five shapes, to enable the same/different shape discrimi-
nation cover task (see below).

Auditory cues consisted of three pure tones (440, 554, and 659 Hz;
80 ms per tone; 5 ms intervals), presented in either ascending or descend-
ing pitch.

Experimental procedure. Each trial of the main experiment started with
the presentation of a fixation bullseye (diameter, 0.7°). During the pre-
diction runs, an auditory cue (ascending or descending tones, 250 ms)
was presented 100 ms after onset of the trial (Fig. 1A). After a 500 ms
delay, two consecutive shape stimuli were presented for 250 ms each,
separated by a 500 ms blank screen (Fig. 1A). The auditory cue (ascend-
ing vs descending tones) predicted whether the first shape on that trial
would be shape 2 or shape 4 (of five shapes; Fig. 1B). The cue was valid on
75% of trials, whereas in the other 25% of trials the unpredicted shape
would be presented. For instance, an ascending auditory cue might be
followed by shape 2 on 75% of trials and by shape 4 on the remaining 25%
of trials. Participants were trained on the cue–shape associations during
practice runs that took place immediately before the prediction runs, in
the scanner. That is, before the first prediction run, participants per-
formed a practice run, consisting of two blocks of 56 trials each (112 trials
total, �8 min), in which the auditory cue was 100% predictive of the
identity of the first shape on that trial (e.g., ascending tones always fol-
lowed by shape 2 and descending tones followed by shape 4). Halfway
through the experiment, the contingencies between the auditory cues
and the shapes were flipped (e.g., ascending tones now followed by shape
4 and descending tones by shape 2), and participants performed another
practice run (112 trials, �8 min) to learn the new contingencies. The
order of the cue–shape mappings was counterbalanced across partici-

pants. This procedure served to equate the frequencies of all tones and
shapes and their transitions and to ensure that any differences between
valid and invalid trials could not be explained by stimulus differences.
The two practice runs took place while anatomical scans (see below) were
acquired, to make full use of scanner time. Note that learning of the
associations was not explicitly assessed behaviorally, but rather relied on
previous work using a highly similar task structure that resulted in rapid
learning (Kok et al., 2012, 2014, 2017).

On each trial, the second shape was either identical to the first or
slightly warped. This warp was achieved by modulating the amplitude of
the 3.18 Hz RFC component defining the shape. This modulation could
be either positive or negative (counterbalanced over conditions), and
participants’ task was to indicate whether the two shapes on a given trial
were the same or different, using an MR-compatible button box. After
the response interval ended (750 ms after disappearance of the second
shape), the fixation bullseye was replaced by a single dot, signaling the
end of the trial while still requiring participants to fixate. This task was
designed to avoid a direct relationship between the perceptual prediction
and the task response. Furthermore, by modulating one of the RFCs that
was not used to define our one-dimensional shape space, we ensured that
the shape change on which the task was performed was orthogonal to the
changes that defined the shape space and thus orthogonal to the predic-
tion cues. The size of the modulation was determined by an adaptive
staircasing procedure (Watson and Pelli, 1983), updated after each trial,
to make the task challenging (�75% correct). Separate staircases were
run for trials containing valid and invalid cues, as well as for the shape-
only runs, to equate task difficulty between conditions. All participants
completed two runs of this task (128 trials per run).

In two additional runs, which were interleaved with the runs just de-
scribed (in ABBA fashion, order counterbalanced over participants), the
25% invalid trials did not involve presentation of the unpredicted shape,
but rather no shape stimuli were presented at all. These omission trials
were included in an attempt to decode expected but omitted shapes from
the BOLD response. However, no such effects were found. One potential
explanation of this null finding may be that the omission of the shape
triggered different cognitive processes than during valid and invalidly
cues trials. For example, the absence of any shape is quite salient and
surprising given the regularity of their appearance in the rest of the study.
In addition, participants did not perform a task on the omission trials,
eliminating the need for perceptual discrimination, decision processes,
and response selection. However, there are other potential explanations
as well, perhaps related to the nature of the shape stimuli. Specifically, it
is striking that expected but omitted shapes could not be decoded from
visual cortex, whereas expected but omitted gratings can be in a highly
similar design (Kok et al., 2014). We are conducting additional studies to
better understand the conditions under which omission trials do (Kok et
al., 2014; Hindy et al., 2016) and do not (the current study) reveal expec-
tations, and thus the omission data are not considered further in this
study.

Finally, participants completed two shape-only runs (120 trials per
run), in which no auditory cues were presented. As in the prediction
runs, the start of each trial was signaled by the onset of the fixation
bullseye, and the stimulus onset asynchrony (SOA) between this onset
and the presentation of the first shape was 850 ms (Fig. 1C). On any given
trial, one of the five shapes would be presented, with equal (20%) likeli-
hood. As in the prediction runs, the first shape was followed by a second
one that was either identical or slightly warped, and participants’ task was
to report same or different. These runs were designed to be as similar as
possible to the prediction runs, save the absence of the auditory cues and
the equal rates of presentation of all five shapes. The two shape-only runs
flanked the runs containing the auditory cues, constituting the first run
and sixth (last) run of the experiment.

The staircases were kept running throughout the experiment. They
were initialized at a value determined during an initial practice session
1–3 d before the fMRI experiment (no auditory cues, 120 trials). After the
initial practice run, the meaning of the auditory cues was explained, and
participants practiced briefly with both cue–shape contingencies (valid
trials only; 16 trials per contingency). Note that this practice session did
not train participants on any particular cue–shape association, since both
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associations were practiced equally often, but instead simply served to
acquaint them with the structure of the trials in the fMRI session. The
actual training of the cue–shape associations took place in the scanner
(see above).

MRI acquisition. Structural and functional MRI data were collected on
a 3T Siemens Prisma scanner with a 64-channel head coil. Functional images
were acquired using a multiband echoplanar imaging sequence (TR, 1000
ms; TE, 32.6 ms; 60 transversal slices; voxel size, 1.5 � 1.5 � 1.5 mm; 55° flip
angle; multiband factor, 6). This sequence produced a partial volume for
each participant, parallel to the hippocampus and covering the majority of
the temporal and occipital lobes. Anatomical images were acquired using a
T1-weighted MPRAGE sequence, using a GeneRalized Autocalibrating Par-
tial Parallel Acquisition (GRAPPA) acceleration factor of 3 (TR, 2300 ms;
TE, 2.27 ms; voxel size, 1 � 1 � 1 mm; 192 transversal slices; 8° flip angle).
Additionally, to enable hippocampal segmentation, two T2-weighted turbo
spin-echo (TSE) images (TR, 11,390 ms; TE, 90 ms; voxel size, 0.44 � 0.44 �
1.5 mm; 54 coronal slices; perpendicular to the long axis of the hippocampus;
distance factor, 20%; 150° flip angle) were acquired. To correct for
susceptibility-induced distortions in the echoplanar images, a pair of spin-
echo volumes was acquired in opposing phase-encode directions (anterior/
posterior and posterior/anterior) with matching slice prescription, voxel
size, field of view, bandwidth, and echo spacing (TR, 8000 ms; TE, 66 ms).

fMRI preprocessing. The images were preprocessed using FEAT 6
(FMRI Expert Analysis Tool), part of FSL 5 (http://fsl.fmrib.ox.ac.uk/fsl,
Oxford Centre for Functional MRI of the Brain; RRID:SCR_002823;
Jenkinson et al., 2012). Susceptibility-induced distortions were deter-
mined on the basis of the opposing spin-echo volume pairs using the FSL
topup tool (Andersson et al., 2003). The resulting off-resonance field
output was converted from hertz to radians per second and supplied to
FEAT for B0 unwarping (see below). The first six volumes of each run
were discarded to allow T1 equilibration. For each run, the remaining
functional images were spatially realigned to correct for head motion,
and simultaneously supplied to B0 unwarping and registered to the par-
ticipants’ structural T1 image, using boundary-based registration. The
functional data were temporally high-pass filtered with a 128 s period
cutoff; no spatial smoothing was applied. Finally, the two TSE images
were averaged, and the resulting image was registered to the T1 image
through FLIRT (FMRIB’s Linear Image Registration Tool).

All analyses were performed in participants’ native space. For the
searchlight analyses (see below), each participant’s output volumes were
registered to the Montreal Neurological Institute (MNI) template to al-
low group-level statistics. This was achieved by applying the nonlinear
registration parameters obtained from registering each participant’s T1
image to the MNI template using AFNI’s (RRID:SCR_005927) 3dQwarp
(https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dQwarp.html).

Regions of interest. Hippocampal subfields CA2–CA3–DG, CA1, and
the subiculum were defined on the basis of the TSE and T1 images using
the automatic segmentation of hippocampal subfields machine learning
toolbox (Yushkevich et al., 2015) and a database of manual medial tem-
poral lobe segmentations from a separate set of 51 participants (Aly and
Turk-Browne, 2016a,b). Manual segmentations were based on anatom-
ical landmarks used in prior studies (Duvernoy, 2005; Carr et al., 2010;
Schapiro et al., 2012). Consistent with these studies, CA2, CA3, and DG
were combined into a single region of interest (ROI) because these sub-
fields are difficult to distinguish at our functional resolution (1.5 mm
isotropic). TSE acquisition failed for one participant, and so their hip-
pocampal ROIs were based on the T1 image alone. Results of the auto-
mated segmentation were inspected visually for each participant. The
hippocampus ROI consisted of the union of the CA2–CA3–DG, CA1,
and subiculum subfields.

In visual cortex, V1, V2, and lateral occipital (LO) cortex were auto-
matically defined in each participant’s T1-weighted anatomical scan with
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/; RRID:SCR_001847).
Finally, putamen and caudate ROIs were obtained from FreeSurfer’s
subcortical segmentation, since these regions have been implicated in
associative learning and prediction (Poldrack et al., 2001; den Ouden et
al., 2009; Turk-Browne et al., 2009; Shohamy and Turk-Browne, 2013).

The visual cortex ROIs were restricted to the 500 most active voxels
during the shape-only runs in each ROI, to ensure that we were measur-

ing responses in the retinotopic locations corresponding to our visual
stimuli. Since no clear retinotopic organization is present in the other
ROIs, cross-validated feature selection was used instead (see below).

All ROIs were collapsed over the left and right hemispheres since we
had no hypotheses regarding hemispheric differences.

fMRI data modeling. The functional data of each participant were
modeled with general linear model, using FILM (FMRIB’s Improved
Linear Model), which included temporal autocorrelation correction and
extended motion parameters (six standard parameters, plus their deriv-
atives and their squares) as nuisance covariates. We specified regressors
for the conditions of interest [shape-only runs, five shapes; prediction
runs, two shapes � two prediction conditions (valid vs invalid)], by
convolving a delta function at the onset of the first shape on each trial
with a double-gamma hemodynamic response function (HRF). Addi-
tionally, we included the temporal derivative of each regressor to accom-
modate variability in the onset of the response (Friston et al., 1998).

To investigate the temporal evolution of shape representations in vi-
sual cortex, a finite impulse response (FIR) approach was used to esti-
mate the BOLD signal evoked by each condition of interest in 20 1 s
intervals. This allowed us to estimate the shape decoding signal in a
time-resolved manner, by training the decoder on the FIR parameter
estimates from the 4 –7 s time bins in the shape-only runs (corresponding
to the peak hemodynamic signal) and applying it to all time bins for the
prediction runs. The amplitude and latency of this time-resolved decod-
ing signal was quantified by fitting a double-gamma function and its
temporal derivative.

Shape decoding. To probe neural shape representations, we used a
forward modeling approach to reconstruct the shape from the pattern of
BOLD activity in a given brain region (Brouwer and Heeger, 2009). This
approach has proven successful in reconstructing continuous stimulus
features, such as hue (Brouwer and Heeger, 2009), orientation (Brouwer
and Heeger, 2011), and motion direction (Kok et al., 2013). In the cur-
rent study, shape contour was constructed along a continuous dimension
(see above), allowing the application of a forward model.

We characterized the shape selectivity of each voxel as a weighted sum
of five hypothetical channels, each with an idealized shape tuning curve
(or basis function). As in previous forward model implementations
(Brouwer and Heeger, 2009, 2011; Kok et al., 2013), each basis function
consisted of a half-wave-rectified sinusoid raised to the fifth power, and
the five basis functions were spaced evenly, such that they were centered
on the five points in shape space that constituted the five shapes pre-
sented in the experiment (Fig. 2A). As a result of this, a tuning curve with
any possible shape preference (within the space defined here) could be
expressed as a weighted sum of the five basis functions. Note that, unlike
other stimulus features previously reconstructed using forward models,
the shape space used here was not circular and therefore the channels did
not wrap around.

In the first stage of the analysis, we used parameter estimates obtained
from the two shape-only runs to estimate the weights on the five hypo-
thetical channels separately for each voxel, using linear regression. Spe-
cifically, let k be the number of channels, m the number of voxels, and n
the number of measurements (i.e., the five shapes). The matrix of esti-
mated response amplitudes for the different shapes during the shape-
only runs (Bso, m � n) was related to the matrix of hypothetical channel
outputs (Cso, k � n) by a weight matrix (W, m � k): Bso � WCso.

The least-squares estimate of this weight matrix W was estimated using

linear regression: Ŵ � BsoCso
T (CsoCso

T ) �1.
These weights reflected the relative contribution of the five hypothet-

ical channels in the forward model (each with their own shape selectivity)
to the observed response amplitude of each voxel. Using these weights,
the second stage of analysis reconstructed the channel outputs associated
with the pattern of activity across voxels evoked by the stimuli in the main
experiment (Bexp), again using linear regression. This step transformed
each vector of n voxel responses (parameter estimates per condition) into
a vector of five (number of basis functions) channel responses. More
specifically, the channel responses (Cexp) associated with the responses in
the main experiment (Bexp) were estimated using the learned weights

(W ): Ĉexp � (Ŵ TŴ) �1Ŵ TB̂exp.
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These channel outputs were used to compute a weighted average of the
five basis functions, reflecting a neural shape tuning curve (Fig. 2B). Note
that, during the main experiment (i.e., the prediction runs), only shapes
2 and 4 were presented. Thus, four shape tuning curves were obtained for
the prediction runs: two shapes by two prediction conditions (valid vs
invalid). We collapsed across the presented shape by subtracting the
shape tuning curve for shape 4 from that for shape 2, thereby subtracting
out any nonshape-specific BOLD signals (Fig. 2C).

Decoding performance was quantified by subtracting the amplitude of
the shape tuning curve at the presented shape (e.g., shape 2) from the
amplitude at the nonpresented shape (shape 4). Collapsing across con-
ditions led to two measures of decoder evidence per participant: one for
validly predicted shapes and one for invalidly predicted shapes. This
allowed us to quantify evidence for the shape as presented on the screen
(by averaging evidence for validly and invalidly predicted shapes) and
evidence for the cued shape [by averaging (1 � evidence) for the invalidly
predicted shapes with evidence for the validly predicted shapes]. These
measures were statistically tested at the group level using simple t tests.

For the visual cortex ROIs, voxels were selected based on the strength
of the evoked response to the shapes during the shape-only runs. Other
brain regions, such as the hippocampus, do not show a clear evoked
response to visual stimuli. Therefore, we followed a different voxel selec-
tion procedure for the other ROIs. First, voxels were sorted by their
informativeness, i.e., how different the weights for the five channels were
from each other (quantified by the standard deviation of the five
weights). Second, the number of voxels to include was determined by
selecting between 10 and 100% of all voxels (in steps of 10%), and train-
ing and testing the model on these voxels, within the shape-only runs
(i.e., training on one run and testing on the other run). For each iteration,

decoding performance on shapes 2 and 4 was quantified as described
above, and the number of voxels that yielded the highest decoding per-
formance was selected (group average: hippocampus, 1536 of 3383 vox-
els; caudate, 590 of 2240 voxels; putamen, 1498 of 3582 voxels).

We also labeled the selected hippocampus voxels based on their sub-
field from the hippocampal segmentation (group average: CA1, 436 vox-
els; CA2–CA3–DG, 572 voxels; subiculum, 425 voxels). Differential
contributions of the subfields were statistically tested by performing a
one-way repeated-measures ANOVA on the measure of interest (e.g.,
decoding of the cued shape; Fig. 3D).

For the main ROI and searchlight analyses, the input to the forward
model consisted of voxelwise double-gamma parameter estimates, re-
flecting the amplitude of the BOLD response. Additionally, decoding was
also applied to the FIR model parameter estimates in visual cortex.

Searchlight analysis. To explore the specificity of presented and pre-
dicted shape representations, a multivariate searchlight approach was
used to test these effects within the field of view of our functional scans
(most of occipital and temporal and part of parietal and frontal cortex).
A spherical searchlight with a radius of 5 voxels (7.5 mm) was passed over
all functional voxels. In each searchlight, we performed shape decoding
in the same manner as in the ROIs, yielding maps of decoder evidence for
the presented and predicted shapes, respectively, for each participant.
Group-level nonparametric permutation tests were applied to these
searchlight maps using FSL Randomize (Winkler et al., 2014), correcting
for multiple comparisons at p � 0.05 using threshold-free cluster en-
hancement (Smith and Nichols, 2009).

Experimental design and statistical analysis. The current study was de-
signed to compare differences in BOLD signals evoked by validly and
invalidly predicted visual stimuli. For each ROI, the amplitude and la-

Figure 3. Shape representations in visual cortex and hippocampus. A, Shape reconstructions from patterns of activity in V1, separately for validly (green) and invalidly (red) predicted shapes.
Representations in visual cortex (V1, V2, LO; V1 plotted as representative region) were dominated by the presented shape, with modest modulation by the predictive cues in V1. The inset depicts
quantified evidence for presented (Pres, blue) and predicted (Pred, yellow) shapes. B, Shape reconstructions in the hippocampus were fully determined by the cued (predicted) shape, rather than
the presented shape. The inset depicts quantified evidence for presented (Pres, blue) and predicted (Pred, yellow) shapes. C, A searchlight analysis revealed evidence for the presented shape in the
occipital lobe and for the predicted (but not presented) shape in the hippocampus. See Table 1 for full results. D, Decoding of the predicted shapes across hippocampal subfields (SUB). †p � 0.053;
*p � 0.05; **p � 0.01. Shaded regions and error bars indicate SEM.
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tency of the BOLD response, as well as of the shape decoding signal, were
quantified as described in the appropriate sections above. To test for
significant differences between our conditions of interest, these measures
were subjected to paired-sample t tests (valid vs invalid). Additionally, to
test the differential involvement of the hippocampal subfields, we con-
ducted a repeated-measures ANOVA on the predicted shape signal with
the three-level factor “subfield,” as described previously (see above,
Shape decoding). A significant effect of subfield was followed up with
planned t tests within individual subfields, as well as of differences be-
tween pairs of subfields. In other words, we statistically assessed subfields
when this was justified by a significant omnibus effect to assess the dis-
tribution of the predicted shape signal over subfields. This hierarchical
approach helps control the false positive rate, rather than simply exam-
ining all possible comparisons. Statistical testing of the whole-brain
searchlight results is described in detail above (see Searchlight analysis).

Code accessibility. Data and code are available upon request from the
first author (peter.kok@yale.edu).

Results
Participants were exposed to auditory tones that validly or inval-
idly predicted the upcoming shape stimulus (Fig. 1A,B). This
first shape was followed by a second shape that was either identi-
cal to the first or slightly warped. Participants performed a shape
discrimination task, reporting whether the two shapes on a given
trial were the same or different.

Behavior
Participants were able to discriminate small differences in the
complex shapes, during the shape-only runs (36.9 � 2.3% mod-
ulation of the 3.18 Hz radial frequency component, mean �
SEM) and during the prediction runs (valid trials, 31.6 � 2.5%;
invalid trials, 33.2 � 2.9% modulation). The discrimination
thresholds for valid and invalid trials were not reliably different
(t(23) � 1.00, p � 0.32). This is not surprising, as the discrimina-
tion task was independent of the prediction manipulation: the
auditory cue provided no information about which choice was
correct, and the shape manipulation on different trials was or-
thogonal to the feature dimensions defining the shape space. Ac-
curacy and reaction times (RTs) also did not differ significantly
between valid (accuracy, 70.6 � 1.2%; RT, 575 � 16 ms) and
invalid (accuracy, 68.8 � 1.5%; RT, 573 � 18 ms; both p values
�0.20) trials, which was expected because these conditions were
staircased separately to the same performance level.

Shape reconstruction
The decoder successfully reconstructed the presented shapes
from the pattern of activity in visual cortex (V1: t(23) � 14.72, p �
3.4 � 10�13; V2: t(23) � 14.23, p � 6.8 � 10�13; LO: t(23) � 7.04,
p � 3.5 � 10�7), with a modest but significant modulation by the
predictive cues in V1 (t(23) � 2.58, p � 0.017; Fig. 3A) but not in
V2 (t(23) � 1.42, p � 0.17) or LO (t(23) � 0.17, p � 0.87). In other
words, shape representations in visual cortex were dominated by
what was presented to the eyes.

The results were strikingly different in the hippocampus.
Here, the pattern of activity contained a representation of the
predicted shape (t(23) � 2.86, p � 0.0089), whereas the presented
shape was not significantly represented (t(23) � 0.54, p � 0.59).
That is, shape representations in the hippocampus were fully
determined by the auditory cue and the expectation it established
(Fig. 3B).

This dissociation was confirmed by a searchlight analysis,
which revealed significant evidence for the presented shape in the
occipital lobe and for the predicted (but not presented) shape in
the hippocampus (Fig. 3C). This analysis also revealed evidence

for the predicted shape in more anterior occipital cortex and a few
smaller clusters elsewhere (Table 1).

Note that the hippocampal cluster in the searchlight analysis
was in the right hemisphere only, whereas we collapsed over
hemisphere in the ROI analysis. This apparent laterality may be
an artifact of statistical thresholding or may indicate a genuine
hemispheric difference. We did not have hypotheses about left
versus right or anterior versus posterior hippocampus but inves-
tigated these divisions post hoc because of the searchlight results
by subdividing the hippocampal ROI. There were no reliable
differences in evidence for the predicted shape in left versus right
(p � 0.72) or anterior versus posterior (p � 0.93) hippocampus.
In fact, decoding of the predicted shape was significant within
each of these four subdivisions of the hippocampus individually
(all p values �0.05).

To investigate the circuitry underlying these predictions fur-
ther, we applied an automated anatomical segmentation method
to distinguish the subfields of the hippocampus. This analysis
revealed that hippocampal subfields encoded the predicted
shapes to different extents (F(2,46) � 6.45, p � 0.0034; Fig. 3D).
The CA3 subfield is thought to be most strongly involved in
pattern completion (i.e., retrieving previously encoded memo-
ries from partial cues), whereas CA1 compares such retrieved
memories to incoming sensory input supplied by entorhinal cor-
tex (EC). Accordingly, we hypothesized that CA3 would have a
purer representation of the predicted shape than CA1, since the
latter would also be affected by the presented shape. In line with
this hypothesis, predicted shapes could be reconstructed better in
CA3 (combined with CA2 and dentate gyrus) than in CA1 (dif-
ference between ROIs: t(23) � 2.31, p � 0.031). Note that the
representation of the predicted shapes in CA2–CA3–DG itself
was not statistically significant but was only a trend (t(23) � 2.04,
p � 0.053), whereas the effect in CA1 was far from significant and
even numerically negative (t(23) � �1.08, p � 0.29). Surprisingly,
predicted shapes were also strongly represented in the subiculum
(t(23) � 2.97, p � 0.0069), which could perhaps be related to its
known role in relaying hippocampal signals back to sensory
cortex.

We interpret the presence of shape expectations in the hip-
pocampus as reflecting relational memory (Cohen and Eichen-
baum, 1993): item memories of the tones and shapes are bound
together in a temporal relationship during the practice phase and
then further during valid trials; when a particular tone cue is
encountered, its item memory retrieves this relationship and re-
activates the item memory for the associated shape. This frame-
work suggests that the success of our decoder depends on the
extent to which it has learned about the item memories for dif-
ferent shapes. We examined this hypothesis by breaking down
our training examples based on familiarity with the shapes, sep-
arating the two shape-only runs rather than collapsing, as was

Table 1. Searchlight results

Anatomical region Hemisphere Cluster size Peak p Coordinates (x, y, z)

Presented shape decoding
Posterior occipital cortex Bilateral 8964 �0.001 �22, �88, �22

Predicted shape decoding
Calcarine sulcus Right 180 0.016 14, �70, 20
Hippocampus Right 63 0.026 24, �18, 16
Middle cingulate Right 27 0.028 2, 8, 40
Caudate Left 7 0.028 �16, 4, 8
Cerebellum Left 5 0.044 �26, �62, 22

All p values are corrected for multiple comparisons. Coordinates reflect local maxima of significant clusters in MNI
space.
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done in all of the analyses above. Specifically, we anticipated that
training the decoder on the second shape-only run at the end of
the session (run 6), after participants had the opportunity to
repeatedly encode the shapes, would be more effective than train-
ing on the first shape-only run at the beginning of the session
(run 1), when the shapes were more novel. Indeed, we found a
significantly stronger representation of the predicted shape when
the reconstruction model was trained on the last versus first
shape-only run in CA2–CA3–DG (t23 � 3.09, p � 0.0052) but not
in CA1 (t(23) � �0.23, p � 0.82) or the subiculum (t(23) � 0.89,
p � 0.38). Following up on this significant difference in CA2–
CA3–DG, we found that decoding of the predicted shape was
significant when training the model on the last run only (t(23) �
2.99, p � 0.0065) but not when training it on the first run (t(23) �
�0.55, p � 0.59). In visual cortex, on the other hand, training on
the last versus first shape-only run did not affect the representa-
tion of the predicted shape (V1: t(23) � �0.88, p � 0.39; V2:
t(23) � 0.17, p � 0.87; LO: t(23) � 0.004, p � 0.997).

Visual facilitation
As reported above, shape representations in visual cortex were
dominated by the shapes presented to the eyes. However, the
temporal evolution of these representations was strongly affected
by the auditory prediction cues. We characterized the time
courses of both the mean BOLD response and the shape decoding
signal by fitting a canonical (double-gamma) hemodynamic re-
sponse function (HRF) and its temporal derivative. The param-
eter estimate of the canonical HRF indicates the peak amplitude
of the signal, whereas the temporal derivative parameter estimate
reflects the latency of the signal (Friston et al., 1998; Henson et al.,
2002).

This approach revealed that there was a modest but highly
reliable difference in the latency of the BOLD response evoked by
validly and invalidly predicted shapes, as measured by the tem-
poral derivative (V1: t(23) � 6.33, p � 1.9 � 10�6; V2: t(23) � 7.31,
p � 1.9 � 10�7; LO: t(23) � 7.48, p � 1.32 � 10�7; Fig. 4A). In
other words, the BOLD response in visual cortex was significantly
delayed by invalid auditory cues. Note that this was not caused by
the stimuli per se, as the tone–shape mappings were arbitrary and
reversed halfway through the study. There was no significant
difference in the amplitude of the BOLD response between con-
ditions, as measured by the canonical HRF (V1: t(23) � 0.84, p �
0.41; V2: t(23) � 1.64, p � 0.12; LO: t(23) � 1.96, p � 0.063).

The delay for invalidly predicted shapes was also apparent in
the temporal evolution of the reconstructed shape representa-
tions (Fig. 4B). There was a reliable difference in the temporal
derivative of the time-resolved decoding signal in V1 (t(23) �
3.40, p � 0.0024) and V2 (t(23) � 3.06, p � 0.0056), with a
marginal effect in LO (t(23) � 1.96, p � 0.062). In V1, the peak of
the decoding signal was significantly lower for invalidly predicted
shapes than for validly predicted shapes (t(23) � 2.73, p � 0.012),
whereas there was no such effect in V2 (t(23) � 1.11, p � 0.27) or
LO (t(23) � 0.15, p � 0.87).

In summary, although there was a modest effect of prediction
on the amplitude of the shape decoding signal in V1, the most
striking effects of prediction in visual cortex were on the latency
of the BOLD response and decoding signal.

Hippocampal– cortical relationships
It is impossible with fMRI to establish that hippocampal predic-
tion causes visual facilitation, but a precondition for such a mech-
anism is that these two measures should be related. Testing this
relationship within participants was not possible in the current

study because single-trial reconstruction and decoding of predic-
tions was too noisy, especially in the hippocampus. We thus ad-
opted an across-participant approach: we hypothesized that
participants with greater decoding of the predicted shape in the
hippocampus should have a greater latency shift in the decoding
of invalidly versus validly cued shapes in visual cortex. We found
such a relationship between the hippocampus and LO (r � 0.42,
p � 0.040; Fig. 5), but not with V1 (r � �0.29, p � 0.17) or V2
(r � �0.05, p � 0.81).

Strikingly, the hippocampal–LO relationship differed strongly
across hippocampal subfields (Fig. 5). In CA2–CA3–DG, as for the
hippocampus as a whole, there was a reliable positive relationship
(r � 0.59, p � 0.0022), with more hippocampal prediction associ-
ated with more LO facilitation. In CA1, however, the relationship
was reliably negative (r � �0.44, p � 0.032), with more hippocam-
pal prediction associated with less LO facilitation. There was no re-
liable relationship in subiculum (r � 0.09, p � 0.66). The surprising
negative relationship between CA1 and LO also held for V1 (r �
�0.55, p � 0.0047) and V2 (r � �0.57, p � 0.0036), whereas the
positive relationship of CA2–CA3–DG was found only for LO (V1:
r � 0.039, p � 0.86; V2: r � 0.17, p � 0.43).

In summary, although these findings do not resolve the causal
direction of hippocampal– cortical interactions, they are consis-
tent with the proposed mechanism of the hippocampus supply-
ing predictions to visual cortex, at least more than if we had found
no such relationships.

Caudate predictions
In addition to the hippocampus, we also examined the striatum,
specifically the caudate and putamen, based on previous studies
of prediction (den Ouden et al., 2009; Turk-Browne et al., 2009)
as well as the known involvement of the striatum in associative
learning (Poldrack et al., 2001; Shohamy and Turk-Browne,
2013). We found that the caudate represented the predicted
shape (t(23) � 3.07, p � 0.0054) but not the presented shape
(t(23) � 0.10, p � 0.92), as in the hippocampus. We could not
reconstruct shape information from the putamen for either the
predicted (t(23) � 1.58, p � 0.13) or the presented (t(23) � 0.27,
p � 0.79) shapes. Unlike the hippocampus, LO facilitation did
not correlate with prediction in the caudate (r � 0.23, p � 0.27)
or putamen (r � 0.23, p � 0.27), nor were there correlations with
V1 or V2 (p values �0.05).

Learning and contingency reversal
All expectations in this study were learned during the session,
raising the interesting question of how they evolve over the learn-
ing process. Unfortunately, the current design was not well suited
to answer this question because participants were pretrained on
both contingencies during practice runs without fMRI. Because
of these long practice runs, we did not anticipate much additional
learning to take place during fMRI acquisition. Nevertheless, we
examined whether the strength of prediction changed over time
by repeating the main analysis separately within each of the two
blocks (first and second halves, respectively) of both contingen-
cies. We analyzed potential effects of “block” (first vs second half
of each run) and “contingency” (before vs after contingency re-
versal) using a two-way repeated-measures ANOVA. Collapsing
across contingencies, we did not find evidence for an increase in
prediction signals from the first to the second block in either the
hippocampus (main effect of block: F(1,22) � 0.005, p � 0.94) or
the caudate (F(1,22) � 0.26, p � 0.61). There was also no signifi-
cant difference in prediction signals before versus after the
contingency reversal, collapsing over blocks, in hippocampus
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Figure 4. Time-resolved activity and decoding in visual cortex. A, Time course of the mean BOLD response, separately for validly (green) and invalidly (red) predicted shapes, in visual cortex. These
time courses reflect the fit of the canonical HRF and its temporal derivative to the preprocessed fMRI data by condition. B, Time course of the shape decoding signal, separately for validly (green) and
invalidly (red) predicted shapes. Here, the canonical HRF and its derivative were not fit to the fMRI data directly, but rather to a continuous decoding signal obtained by reconstructing shape
information for each time point from FIR parameter estimates. Shaded regions and error bars indicate SEM.

Figure 5. Hippocampal– cortical interactions. Correlation between the strength of predicted shape decoding in the hippocampus and the latency shift in the decoding signal caused by predictions
in LO.
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(main effect of contingency: F(1,22) � 0.62, p � 0.44) and caudate
(F(1,22) � 3.83, p � 0.063), although note that caudate showed a
nonsignificant trend toward prediction signals being stronger af-
ter the contingency reversal than before. Finally, there was no
interaction between block and contingency in either region (both
p values �0.20). In short, we did not observe gradual learning of
the prediction signals (beyond the practice runs) in either hip-
pocampus or caudate.

Same versus different trials
In 50% of the trials the two shapes were identical, and in the other
50% the second shape was slightly warped with respect to the
first. For our main analyses, we collapsed across these two trial
types. In an additional analysis, we investigated whether or not
expectation effects differed for same versus different trials. We
found that, in line with the warps being very subtle and orthog-
onal to our shape space (see Materials and Methods), shape de-
coding in visual cortex did not differ between same and different
trials (V1: F(1,22) � 0.33, p � 0.57; V2: F(1,22) � 0.17, p � 0.69; LO:
F(1,22) � 0.73, p � 0.40), nor did the effect of same versus differ-
ent interact with the validity of the expectation cue (V1: F(1,22) �
0.14, p � 0.71; V2: F(1,22) � 0.01, p � 0.98; LO: F(1,22) � 0.73, p �
0.40). In hippocampus, decoding of the predicted shape was not
affected by the same versus different distinction (F(1,22) � 0.25,
p � 0.62). However, there was a trend toward decoding of the
shape presented on screen being slightly better for same than for
different trials (F(1,22) � 4.22, p � 0.052). In caudate, the reverse
applied; decoding of the presented shape was not affected by the
same versus different distinction (F(1,22) � 0.02, p � 0.89), yet
decoding of the predicted shape was slightly better for same than
different trials (F(1,22) � 4.59, p � 0.043). In summary, unlike the
caudate, representations of the predicted shapes in the hip-
pocampus were immune to variation in visual input, despite also
registering this information, as reflected in representations of the
presented shape.

Discussion
Predictive coding theories (Mumford, 1992; Rao and Ballard,
1999; Friston, 2005) of cortical processing fit well with the strong
influence of predictions on sensory processing reported here and
elsewhere (for review, see den Ouden et al., 2012; Summerfield
and de Lange, 2014). Generally, such models seek to explain
mostly lower-level phenomena that can be resolved within local
circuits of visual cortex, such as end-stopping and surround sup-
pression (Rao and Ballard, 1999; Spratling, 2010). However,
many predictive cues in our environment require cross-modal
interactions and invoke complex expectations about objects. We
hypothesized that such cross-modal predictions may be gener-
ated in the hippocampus. Specifically, after presentation of a pre-
dictive cue, CA3 may retrieve the associated item through pattern
completion of a learned temporal relationship and send this pre-
diction to CA1 and from there back to sensory cortex, including
through the subiculum (Lavenex and Amaral, 2000; Roy et al.,
2017). Within CA1, memory-based predictions (originating
from CA3) have been proposed to inhibit matching sensory sig-
nals (from EC), thereby signaling novelty or prediction error
(Lisman and Grace, 2005; Kumaran and Maguire, 2007; Chen et
al., 2011, 2015; Duncan et al., 2012). Based on this model, one
would expect CA3, but not CA1, to represent only the predicted
item, and that is indeed what we observed in the current study. In
addition, a representation of the predicted item was found in the
subiculum, known to be a major relay between the hippocampus
and sensory cortex, though admittedly not well understood and

often excluded from hippocampal models (McClelland et al.,
1995; Schapiro et al., 2017).

If the hippocampus is a source of sensory expectations, there
should be a relationship between the strength of hippocampal
predictions and effects of prediction in visual cortex. Although
the current study did not allow us to study this relationship
within participant (across trials) because of poor single-trial de-
coding, we did find such a relationship across participants. This
also held for the CA2–CA3–DG subfield alone, in line with CA3’s
proposed role in generating predictions via pattern completion.
Conversely, in line with the proposed inhibitory role of predic-
tions in CA1, prediction strength in this subfield was negatively
correlated with the facilitative effects of prediction on visual
cortex.

The model outlined above suggests a specific direction of neu-
ral signal flow during the generation of predictions, namely from
CA3 through CA1 and the subiculum to cortex. However, be-
cause of the slow nature of the hemodynamic response and the
lack of causal intervention, standard fMRI does not allow us to
distinguish the direction of flow between regions. Future studies
will be needed to directly address this important issue, including
with intracranial recordings in neurological patients with both
depth electrodes in the hippocampus and surface electrodes in
sensory cortex. Additionally, signals from the hippocampus to
cortex are known to arrive in the deep layers of EC, whereas
signals from cortex to hippocampus flow through the superficial
layers of EC (Lavenex and Amaral, 2000). Using high-field fMRI
to study layer-specific prediction signals in EC could thus be used
to help establish the direction of signal flow between hippocam-
pus and cortex (Maass et al., 2014; Muckli et al., 2015; Kok et al.,
2016a).

The current study suggests that the hippocampus is involved
in signaling cross-modal predictions. However, there are several
other mechanisms for prediction in the brain, including related
to object recognition and semantic labels in medial prefrontal
cortex (Bar et al., 2006) and to value and reinforcement learning
in the ventral striatum (den Ouden et al., 2012), as well as many
other areas of polymodal association cortex that receive the re-
quired sensory inputs. What might distinguish the contribution
of the hippocampus is the ability to quickly and flexibly learn new
predictions, whereas these other systems learn more gradually
after extensive experience and consolidation (McClelland et al.,
1995; Schapiro et al., 2017). Regardless, further work will be
needed to understand the relative contributions of each system
and whether they have a cooperative or competitive relationship.
For instance, it has been proposed that the striatum serves as a
gating mechanism, upregulating connectivity between top-down
attention systems and sensory cortex when prediction errors oc-
cur (Zink et al., 2006; den Ouden et al., 2010), rather than con-
taining actual stimulus representations itself. However, our
findings suggest that at least the caudate contains shape-specific
representations of predicted stimuli and that they are encoded in
similar activity patterns to the corresponding sensory stimuli
(given generalization of the model from shape-only to prediction
runs). An important avenue for future research would be to tease
apart the roles of these two learning systems, the hippocampus
and the striatum, in storing predictive associations and their re-
spective roles in sending feedback to sensory cortex (Poldrack et
al., 2001; Shohamy and Turk-Browne, 2013). The current study
only investigated the consequences of learning such associations,
rather than the learning process itself, since fMRI acquisition was
preceded by a practice phase that familiarized participants with
the associations many times. In future work, fMRI signals from
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the hippocampus and striatum could be acquired while the asso-
ciations are being learned, to establish in which of these regions
the time course of learning best matches the build-up of expec-
tation signals in visual cortex.

The effects of the complex shape predictions on processing in
the visual cortex, as reported here, differ strikingly from those
reported previously for low-level feature predictions, using an
otherwise similar paradigm (Kok et al., 2012). Whereas invalid
grating orientation predictions in that study led to both an in-
creased peak BOLD amplitude and a reduced orientation repre-
sentation in V1 (Kok et al., 2012), the current study found that
invalid shape predictions lead to delayed signals, both in terms of
BOLD amplitude and shape representations. Although the cause
of this difference is currently unclear, we offer a couple of poten-
tial explanations. First, predictions about low-level features and
complex shapes may be encoded differently in visual cortex.
Whereas a prediction about grating orientation could be encoded
by simply increasing the gain of all neurons tuned for that orien-
tation across the visual field (Kok et al., 2016b), complex shape
predictions would require encoding different orientations and
curvatures at specific retinotopic locations. This may be a partic-
ularly difficult challenge given that complex shapes are known to
be encoded in a spatially invariant manner in higher-level visual
cortex (DiCarlo et al., 2012). In line with this account, there is
evidence that predictions about low-level features and complex
natural images can have different effects on perception (Denison
et al., 2011, 2016). Second, whereas invalid gratings in the study
by Kok et al. (2012) were maximally different from predicted
gratings (i.e., orthogonal orientations), the difference between
predicted and unpredicted shapes was more subtle. Such small
violations may be less prone to strong prediction errors but may
rather lead to an integration of top-down predictions and
bottom-up sensory signals (Kok et al., 2013). Clearly, future re-
search is required to investigate these and other factors. A clear
next step is to investigate how low-level feature predictions,
particularly when involving cross-modal cues, engage the
hippocampus.

Potentially, the latency differences between visual cortex sig-
nals induced by validly and invalidly predicted shapes might be
the result of a suppression of neural signals evoked by the first
shape on a given trial by an invalid prediction, but less so for the
second shape (which is no longer really unexpected once the first
shape has been observed). This could lead to a delayed peak ac-
tivity once convolved with the BOLD response. This scenario
seems particularly plausible for the reconstructed shape repre-
sentations, since the early BOLD signals on invalid trials would
presumably contain a mixture of the predicted and presented
shapes, which might, to some extent, cancel each other out in the
eyes of the decoder.

Previous studies have found that predictive cues can lead to
the cortical reinstatement of expected stimuli (Kok et al., 2014;
Hindy et al., 2016), in anticipation of the actual sensory inputs
(Kok et al., 2017). Such cortical reinstatement has been shown for
other cognitive processes as well, such as visual short-term mem-
ory (Harrison and Tong, 2009), mental imagery (Stokes et al.,
2009; Albers et al., 2013), and preparatory attention (Peelen and
Kastner, 2011; Myers et al., 2015). One intriguing possibility is
that these different cognitive processes are subserved by the same
neural mechanism (Pearson and Westbrook, 2015). Specifically,
is cortical reinstatement in working memory, imagery, and atten-
tion mediated by the hippocampus, as it seems to be in associative
memory (Bosch et al., 2014; Gordon et al., 2014) and the cross-
modal predictions studied here? Additionally, do these different

processes affect visual cortex the same way, or do different pro-
cesses modulate different layers of visual cortex, in support of
different computational goals (Friston, 2005; Muckli et al., 2015;
Kok et al., 2016a)?

In conclusion, here we find that patterns of neural activity in
the hippocampus reflect stimulus-specific predictions, as sig-
naled by cross-modal cues. Furthermore, the strength of these
hippocampal signals correlates with facilitation of perceptual
processing in visual cortex. These findings help bridge the gap
between memory and sensory systems in the human brain.
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