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N E U R O S C I E N C E

Learning hierarchical sequence representations across 
human cortex and hippocampus
Simon Henin1,2*, Nicholas B. Turk-Browne3, Daniel Friedman1,2, Anli Liu1,2, Patricia Dugan1,2, 
Adeen Flinker1,2, Werner Doyle1,2, Orrin Devinsky1,2, Lucia Melloni1,2,4*

Sensory input arrives in continuous sequences that humans experience as segmented units, e.g., words and 
events. The brain’s ability to discover regularities is called statistical learning. Structure can be represented at multi-
ple levels, including transitional probabilities, ordinal position, and identity of units. To investigate sequence encoding 
in cortex and hippocampus, we recorded from intracranial electrodes in human subjects as they were exposed to 
auditory and visual sequences containing temporal regularities. We find neural tracking of regularities within 
minutes, with characteristic profiles across brain areas. Early processing tracked lower-level features (e.g., sylla-
bles) and learned units (e.g., words), while later processing tracked only learned units. Learning rapidly shaped neu-
ral representations, with a gradient of complexity from early brain areas encoding transitional probability, to 
associative regions and hippocampus encoding ordinal position and identity of units. These findings indicate the 
existence of multiple, parallel computational systems for sequence learning across hierarchically organized cortico- 
hippocampal circuits.

INTRODUCTION
We receive continuous input from the world and yet experience it 
in digestible chunks. In the domain of language, for example, acqui-
sition and use require extracting meaningful sequences such as 
words, phrases, and sentences out of a continuous stream of sounds, 
often without clear acoustic boundaries or pauses between linguistic 
elements (1). This segmentation ability occurs incidentally and effort-
lessly and is thought to be a core building block of development. 
Young infants can learn transitional probabilities (TPs) between 
syllables (2) or shapes (3) to extract embedded regularities after 
minimal exposure. In a seminal study (2), 8-month-old infants seg-
mented words after brief exposure to a continuous sequence of an 
artificial language in which TPs between syllables indicated word 
boundaries. Since this discovery, similar abilities have been demon-
strated in adults (4, 5), who also rely on TPs and other statistical 
properties (6–8). This behavior—referred to as “statistical learning” 
(SL)—occurs across many different sensory modalities, tasks, and even 
species. SL represents a fundamental behavior, and yet the brain mech-
anisms that support this cognitive function are poorly understood.

Brain regions such as the hippocampus and the inferior frontal 
gyrus (IFG) have been implicated in visual (9, 10) and auditory SL 
(10, 11). As previous studies have focused on how the brain changes 
after SL, the role of these brain areas during the acquisition of statis-
tical regularities remains largely unexplored. Even less is known about 
what information is represented in these learned regularities and 
whether sequences are encoded similarly or in a complementary 
fashion across these brain areas. Regularities extracted during SL 
range from simple to complex, including TPs between adjacent ele-
ments (i.e., uncertainty given a local context), ordinal position in a 
sequence (i.e., whether an element takes the first, second, third, etc. 

position), and the identity of the learned unit (i.e., a specific higher- 
order chunk such as a word) (12). Last, the fact that SL has been 
observed across sensory modalities raises the question of whether 
the same brain areas and algorithms support extraction and repre-
sentation of regularities (13).

To answer these questions, we collected intracranial recordings 
[electrocorticography (ECoG)] from 23 human epilepsy patients 
with broad cortical and hippocampal coverage during an SL task. 
We used neural frequency tagging (NFT) (14, 15) to identify recording 
sites responsive to the underlying regularities of the SL stimuli over 
different time scales (e.g., syllables and words). NFT leverages the 
fact that cortical activity tracks the rhythms of hierarchical linguistic 
structure, thus allowing the “tagging” of frequency-specific linguistic 
activity. Combining ECoG and NFT, we describe the location and 
temporal tuning of the neural response. Following identification of 
responsive sites, we used representational similarity analysis (RSA) 
to determine which aspect(s) of the temporal regularities are repre-
sented, i.e., TPs, ordinal position, and identity. Last, we relate the 
neural circuits, online dynamics, and representational changes for 
SL across auditory and visual modalities.

We found that SL occurs quickly in both auditory and visual modal-
ities. In both modalities, partially overlapping neural circuits encoded 
statistical units (e.g., words and fractal pairs) and their constituent 
sensory elements (e.g., syllables and images). This learning was sup-
ported by rapid changes in the similarity space of neural represen-
tations, with structure encoded at multiple levels: (i) TPs, with 
elements grouped by probability strength; (ii) ordinal position, with 
elements grouped by sequence order; and (iii) identity, with elements 
grouped by unit in which they are embedded. Auditory and visual 
elements underwent similar SL-related representational changes, 
yet involved brain areas only partially overlapped [generally supra-
modal areas, such as IFG, anterior temporal lobe (ATL), and the 
hippocampus]. These results provide mechanistic insight into a 
fundamental human learning ability, revealing how cortical areas 
respond to the structure of the world. Our findings also highlight 
NFT as a versatile tool for investigating incidental learning in pre-
verbal infants and other nonverbal patient populations.
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RESULTS
Behavioral evidence of auditory SL
To investigate the neural circuits and computations underlying SL, 
we presented a group of 17 epilepsy patients with brief (2 min × 
5 blocks) auditory streams of syllables in which the structure of the 
sequence was manipulated. In structured streams, each syllable was 
placed into the first, second, or third position of a three-syllable word 
or “triplet” (Fig. 1A). A continuous stream of syllables was generated 
by randomly inserting multiple repetitions of each word without pauses 
or prosodic cues between words. In random streams, syllables were 
inserted the same number of times but in a random order at the 
syllable level. Thus, the TPs were low and uniform, without a word- 
level of segmentation.

Participants were not informed about the stimulus structure. They 
were asked to perform a one-back cover task, in which they had to 
detect occasional repetitions of individual syllables that had been 
inserted into both stream types (16). This task has been used to evaluate 
SL online while assuring attention to the SL stimulus. Accuracy in 
both streams was high and not statistically different [t(16) = 2.03, 
P = 0.06], indicating that participants attended to the stimuli across 
both the structured [mean d′ = 1.04, t(16) =14.41, P < 0.01] and 
random [mean d′ = 0.87, t(16) = 14.27, P < 0.01] streams. Critically, 

we found that behaviorally, reaction times to repeated syllables in 
the structured stream (mean = 733 ms) were significantly faster 
than in the random stream (mean = 917 ms; Z = −3.3, P = 0.001, 
N = 17; fig. S2), suggesting that facilitation had occurred because of 
learning of the underlying structure.

Immediately after exposure to both streams, participants were 
informed of the hidden structure and were asked to perform an 
explicit recognition task. Recognition of the hidden words in the 
structured stream was assessed using a two-alternative forced choice 
(2AFC) task between the hidden words and part-words. Part-words 
consisted of previously shown sequences of syllables but that spanned 
words and thus had overall lower TPs. Across subjects, offline ex-
plicit recognition of the hidden words did not exceed chance (50%) 
performance (mean = 45.4%, SD = 10%; Z = −1.84, P = 0.07, N = 15).

The same procedure was used in a separate cohort of healthy 
subjects in which we replicated the online incidental learning effect 
in the reaction times, i.e., faster responses to syllable repetition in 
the structured than in then random condition (mean structured = 
625 ms, mean random = 828 ms, Z = −3.8, P < 0.001, N = 18). 
Offline explicit recognition was significantly better than chance in 
this neurotypical cohort (mean = 57.3%, Z = 2.04, P = 0.04, N = 18; 
fig. S2).

Fig. 1. Neural tracking of auditory SL. (A) Schematic depiction of the auditory SL task. The structured stream (left) contained 12 syllables [250-ms stimuli onset asyn-
chrony (SOA), 4 Hz] in which the TPs formed four words (color-coded for visualization, 750-ms SOA, 1.33 Hz). The random stream (right) contained the same 12 syllables in 
a random order. The predicted neural response is shown below each syllable stream: Syllable tracking (top) was expected in both conditions, whereas word tracking 
(bottom) was expected only in the structured condition. (B) Phase coherence spectrum in neural data for the structured (left, black) and random (right, gray) condi-
tions from 1898 electrodes in 17 patients. Each significant electrode is depicted with a thin line, and the average is depicted with a thick line. (C) Phase coherence spec-
trum in the structured condition for electrodes showing word-tracking responses, in two groups: electrodes that showed tracking responses at the word rate only (top, 
blue) and electrodes that showed tracking responses at both the word and syllable rate (bottom, orange). (D) Localization of word-only (top, blue) and word + syll (bot-
tom, orange) electrodes exhibiting significant phase coherence in the field potential (FP; light blue, light orange) or the high-gamma band (HGB; dark blue, dark orange).

 on F
ebruary 20, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Henin et al., Sci. Adv. 2021; 7 : eabc4530     19 February 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 12

Neural tracking of auditory SL
We obtained direct neurophysiological signals from 1898 intracra-
nial electrodes in the 17 participants, comprehensively covering the 
frontal, parietal, occipital, and temporal lobes and the hippocampus 
in both hemispheres (fig. S1). We capitalized on NFT to evaluate 
the temporal dynamics of the neural activity to scout for cortical 
areas responding at the rate of the learned regularities. The sensitivity 
of NFT to track SL has been previously demonstrated using nonin-
vasive techniques, i.e., electroencephalography (EEG) and magneto-
encephalography (MEG) (17, 18), enabling us to definitively resolve 
the cortical areas exhibiting selective temporal tuning to the learned 
regularities. Specifically, NFT was used to track representations of 
segmented units at two hierarchical levels of the stream (14, 15, 17). 
We expected entrainment at the syllabic frequency (4 Hz) in both 
structured and random streams. In contrast, we expected that 
entrainment at the word-level frequency (corresponding to triplet 
boundaries or 1.33 Hz) should emerge during exposure to the struc-
tured but not random stream, consistent with segmentation of the 
structured stream.

We first evaluated within-electrode phase coherence in both the 
field potential (FP) and the envelope of the high-gamma band (HGB) 
(15) in the structured and random streams, respectively. Consistent 
with our hypothesis, we found electrodes that showed a significant 
peak in their phase coherence spectrum at the syllable rate (i.e., 4 Hz) 
for both structured and random streams [criterion for observing a 
significant response, false discovery rate (FDR)–corrected P < 0.05]. 
In addition, there was a significant peak at the word rate (i.e., 1.33 Hz), 
but only for the structured stream (criterion for observing a sig-
nificant response: P < 0.05, FDR-corrected; Fig. 1B). These re-
sponses were observed predominately in somatosensory/motor and 
temporal cortices (fig. S4). In these electrodes, we also observed a 
significant phase coherence peak at 2.66 Hz for the structured 
stream, possibly reflecting an oscillation at the rate of syllable pairs, 
consistent with evidence that participants can learn sequential 
pairs embedded in triplets, in addition to the triplets themselves 
(19), or, alternatively, a harmonic of the word rate or a beat fre-
quency. The word-rate response in the structured stream emerged 
rapidly, with a significant response observed as early as 50 word 
exposures in some electrodes (fig. S5). On average, significance of 
word-rate coherence increased over time in the structured stream 
but not in the random stream (fig. S5A), ruling out effects of endog-
enous entrainment over time unrelated to learning. Coherence at the 
word rate in the structured stream was replicated across participants, 
with 16 of 17 patients exhibiting significant entrainment (table S1); 
by contrast, no electrodes showed entrainment at the word rate 
for the random stream. This finding further supports NFT as a 
sensitive and robust tool for assessing online SL.

We then exploited the unique spatial resolution afforded by 
ECoG to localize which cortical areas became synchronized to the 
word rate in the structured condition (Fig. 1D). Different temporal 
tuning responses were observed across electrodes. One tuning pro-
file corresponds to electrodes showing significant coherence at both 
the word and syllable rate (word + syll). These were located primarily 
in the superior temporal gyrus (STG), with smaller clusters in motor 
cortex and pars opercularis. The other tuning profile reflected elec-
trodes showing significant coherence exclusively at the word rate 
(word-only). These were located in IFG and ATL (Fig. 1D). These 
functional responses indicate temporal selectivity to both the input 
(in this case, the syllable) and higher-order learned units (for word + 

syll electrodes), or to higher-order learned units alone without 
responding to specific acoustic features of the input conveying the 
structure (for word-only electrodes). This organization reflects the 
neuroanatomy of the auditory processing hierarchy, with lower- 
order function in STG and higher-order function in surrounding 
fronto- and temporo-parietal cortex (20). Thus, we reasoned that 
word-only responses may arise from higher-level stages of process-
ing than word + syll responses. To quantify this anatomical group-
ing by electrode type, we tested the hypothesis that electrodes 
belonging to one type (i.e., word-only or word + syll) tend to group 
together (e.g., nearest electrode was of the same type) using a Bayesian 
binomial test. Bayesian analysis provided evidence in support of this 
hypothesis [nearest electrode in “same type” versus “different type,” 
log(BF10) = 40.75].

Representational analysis in auditory SL
The NFT results, so far, provide evidence of segmentation of the 
continuous auditory stream with characteristic tuning in lower- 
order areas in STG and higher-order areas in surrounding fronto- 
and temporoparietal cortex. Having mapped the responsive electrodes 
through NFT, we then asked the question: what is driving this seg-
mentation? The neural response to segmentation could be based 
on at least three statistical cues in the stream: TPs (within word, 
TP = 1.0; between word, TP = 0.33), ordinal position (first, second, 
or third position), or word identity (blue, green, purple, or red 
word, as in colors from Fig. 1A). Although all three cues could be 
used to mark the start and end of the words and thus drive segmen-
tation, they differ in content and facilitate unique cognitive func-
tions. For instance, coding based on TPs and the entailed difference 
in entropy between high and low TP can serve as a strong predic-
tion error cue to drive attention and segmentation. Coding of ordi-
nal position represents a flexible and abstract code allowing the 
recombination of elements and might explain previous findings on 
phantom words (21), whereby subjects accept as legal, strings that 
have never appeared during the exposure phase as long as ordinal 
position is preserved. Yet, only coding based on identity gives ac-
cess to whole words, which can then be mapped onto meaning (22).

To evaluate what information is being represented, we used a 
multivariate pattern similarity approach. In the case of word identi-
ty, for example, we reasoned that SL would change the representa-
tional space of stimuli such that syllables belonging to the same 
word would evoke more similar neural activity patterns across elec-
trodes (9); this clustering could, in turn, provide a basis for segmen-
tation (7). Alternatively, the neural representations of syllables may 
cluster by ordinal position or TP, allowing us to test which of these 
cues was learned and whether similar or complementary codes are 
observed across brain areas. We quantified the representational 
space of syllables within the sets of electrodes identified as exhibit-
ing word-only and word + syll coherence (see Fig. 1C) in the NFT 
analysis (either FP or HGB). In addition, we separately investigated 
neural representations across electrodes in the hippocampus, as 
previous studies have shown that the hippocampus is necessary for 
robust SL (10, 23). We calculated the correlation distance between 
the patterns of raw neural activity across electrodes within each set 
of electrodes, i.e., word-only, word + syll, and hippocampus, sepa-
rately, for each pair of syllables and applied multidimensional scal-
ing (MDS) to visualize the similarity structure.

We found that the three sets of electrodes encoded different in-
formation: For word + syll electrodes, distances between syllables 
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revealed a representation based on TPs only (Fig. 2A), grouping syl-
lables based on whether their probability given the preceding syllable 
was low (first) versus high (second, third). In contrast, word-only 
electrodes represented ordinal position (Fig. 2B), grouping syllables 
based on which position they occupied in the words (first versus 
second versus third) and based on the identity of the word to which 
they belong (Fig. 2B, dimension 2). Last, hippocampal electrodes 
showed grouping by word identity only (Fig. 2C). To quantify the 
apparent grouping effects in each set of electrodes, we used an elec-
trode resampling approach to examine pattern similarity across 
syllables for groupings consistent with TP, ordinal position, and 
word identity. To that end, we compared pattern similarity (cor-
relation) for within (same class) versus between (different classes) 
categories; i.e., similarity of syllables with low versus high TP, same 
versus different ordinal position, and same versus different word 
identity, across a set of 200 random resamples for each electrode 
type (word-only, word + syll, hippocampus). Consistent with the 
visualized groupings observed in the MDS analysis, low TP coding 
was only observed for word + syll electrodes (Fig. 2D, left). Reliable 
coding for ordinal position was observed for the word-only elec-
trodes (Fig. 2D, middle). Word identity was observed both in word- 
only electrodes and in the hippocampus (Fig. 2D, right). We repeated 
this analysis using a conceptual model-based dissimilarity compar-
ison (24) and observed the same coding schema for each electrode 
type (fig. S20). These results show that even brief exposure to audi-
tory regularities can reshape the representational space of syllables 
throughout cortex and the hippocampus, giving rise to clustered 
neural representations along several dimensions. That is, learning 

of sequences shapes representations at multiple levels concurrently, 
with a division of labor across lower- and higher-order brain areas 
in terms of simple and generic versus complex and specific regular-
ities. The clustering of responses by TP, ordinal position, and iden-
tity is consistent with fast learning during exposure, as they were 
absent during the first block (~2 min) and present by the fifth block 
(fig. S6). Clustering of responses by these various coding schemes 
was not observed when the same analysis was performed on the 
HGB envelope using the same sets of electrodes (fig. S8). Moreover, 
no clustering of syllable representations was observed in any elec-
trode set when the same analysis was performed on the random 
stream (fig. S9). This demonstrates that changes in representational 
space for the structured stream resulted from SL and not properties 
of the individual stimuli per se. We further analyzed electrode types 
by field type (e.g., FP-responsive versus HGB-responsive electrodes) 
and found that these general coding strategies were preserved by 
response type (word + syll, word-only), with the exception that only 
HGB-responsive electrodes appeared to provide evidence for cod-
ing by word identity (fig. S7).

Behavioral evidence of visual SL
Segmenting continuous input into discrete units extends also to 
stimuli in the visual domain, e.g., to build representations of scenes 
and events (25). Controversy remains as to whether similar SL mecha-
nisms are engaged in segmenting and acquiring structure across 
auditory and visual domains (13). To investigate whether similar 
coding principles could be at work in the visual modality, we tested 
visual SL in 12 intracranial patients. These participants were exposed 

Fig. 2. Pattern similarity results during auditory SL. Multidimensional scaling (MDS) of the distances between syllabic responses across electrodes showing significant 
(A) word + syll responses and (B) word-only responses, as well as (C) across electrodes from the hippocampus. Individual words are color-coded; subscripts represent 
ordinal position (e.g., “tu1pi2ro3”). Dot-dashed ellipses indicate grouping by TP, solid ellipses outline grouping by ordinal position, and dashed ellipses indicate grouping 
at the level of the individual words (color-coded). (D) Quantification of multivariate similarity for syllables in the auditory SL task. Left: Similarity by TP. Greater within-class 
similarity indicates stronger grouping of syllables with low TP (0.33) than syllables with high TP (1.0). A Friedman test indicated a main effect of electrode type on TP 
similarity (2 = 22.03, P < 0.001). Middle: Within versus between similarity for ordinal position. Greater within-class similarity indicates stronger grouping of syllables hold-
ing the same first, second, or third position in a word. A Friedman test indicated a significant main effect of electrode type (2 = 790.35, P < 0.001). Right: Within versus 
between similarity for word identity. Greater within-class similarity indicates grouping of syllables into individual words. A Friedman test indicated a significant main ef-
fect of electrode type (2 = 265.29, P < 0.001). ***P < 0.001 and **P < 0.01, Bonferroni-corrected Wilcoxon rank sum test; error bars denote the population SEM.
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to brief (2 min × 5 blocks) visual streams of fractal images (375 ms 
each) in which the structure of the sequence was manipulated (9). 
In the structured streams, each fractal was assigned to the first or 
second position of a pair (Fig. 3A). We generated a continuous 
stream of fractal pairs by randomly inserting each pair without breaks 
or other cues between pairs. To make the results comparable across 
modalities, we kept the higher-order unit rate, i.e., 1.33 Hz, and thus 
presented pair of fractals. In the random streams, fractals were in-
serted the same number of times but in a random order at the fractal 
level. As a result, there were no pairs to segment.

As in the auditory sequence, participants were not informed 
about the presence of structure in some of the sequences. Instead, 
they were asked to perform a one-back cover task, in which they 
had to detect repetitions of individual fractals that had been occa-
sionally inserted into both stream types (16). Accuracy was similarly 
high in both structured [mean d′ = 2.46, t(7) = 10.27, P < 0.001] and 
random [mean d′ = 2.29, t(7) = 11.6, P < 0.001] streams and did not 
differ [t(7) = 0.89, P = 0.40]. This suggests that participants were 
equally engaged and attentive during both streams. Consistent with 
incidental SL of the structure, we again found significantly faster 
reaction times in the structured stream (mean = 609 ms) than in the 
random stream (mean = 705 ms; Z = −2.24, P = 0.03, N = 8; fig. S10).

Following exposure to both streams, participants performed a 
2AFC recognition task to assess explicit learning of the fractal pairs. 
Average offline explicit recognition was at chance performance in 
these participants (mean  =  53.3%, SD  =  8%; Z  =  1.23, P  =  0.22, 
N = 12). However, as with auditory SL, we again replicated the find-
ings in a neurotypical sample and found evidence of incidental 
learning in the reaction times (e.g., faster reaction times in the struc-
tured condition; mean structured = 630 ms, mean random = 648 ms; 
Z = −2.1, P = 0.03, N = 14), while offline, explicit recognition was 
significantly better than chance (mean = 57.7%, SD = 10%; Z = 2.45, 
P = 0.01, N = 14; fig. S10) in this cohort.

Neural tracking of visual SL
We next turned to NFT to identify brain areas exhibiting SL in neu-
rophysiological recordings from 1606 intracranial electrodes in the 
12 patients, extensively covering frontal, parietal, temporal, and oc-
cipital cortex (fig. S2). To this end, we evaluated within-electrode 
phase coherence in both the FP and the envelope of the HGB (15) in 
the structured and random streams, respectively. We expected an 
entrainment response at a 2.66-Hz frequency to individual fractals 
and at a 1.33-Hz frequency to the learned pairs, the latter only for the 
structured stream. Providing evidence for the acquisition of regularities, 

Fig. 3. Neural tracking of visual SL. (A) Schematic depiction of the visual SL task. The structured stream (left) consisted of a continuous visual stream of eight fractals 
(375-ms SOA, 2.66 Hz). The TPs were adjusted to form four fractal pairs (750-ms SOA, 1.33 Hz). Note that the SOA of the fractals was elongated compared to the syllables 
to match the frequency of the learned units (pairs and words), given that there were two fractals per unit and three syllables. The random stream (right) contained the 
same fractals but in random order. The predicted neural responses are shown under each stream: Fractal tracking is expected for both streams, while pair tracking is ex-
pected for the structured stream only. (B) Phase coherence spectrum in neural data for the structured (left, black) and random (right, gray) conditions from 1606 elec-
trodes in 12 patients. Each significant electrode is depicted with a thin line, and the average across the population is depicted with a thick line. (C) Phase coherence 
spectrum in the structured condition for electrodes showing pair-tracking responses, in two sets: electrodes that tracked pairs only (left, blue) and electrodes that tracked 
pairs and fractals (right, orange). (D) Localization of pair-only (top, blue) and pair + fractal (bottom, orange) electrodes exhibiting significant phase coherence in the FP 
(light blue, light orange) or HGB (dark blue, dark orange).
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we observed a significant peak in the phase coherence spectrum at 
the pair rate (i.e., 1.33 Hz), but only for the structured stream (cri-
terion for significance: P < 0.05, FDR-corrected; Fig. 3B), and which 
localized to more posterior regions, predominately occipital and 
parietal cortex (fig. S12). A significant peak at the fractal rate (i.e., 
2.66 Hz) was found for both structured and random streams (crite-
rion for significance: P < 0.05, FDR-corrected).

Increases in pair-rate responses were observed, on average, within 
430 pair exposures (fig. S13A), with the earliest responses observed 
in some electrodes by 30 pairs (fig. 13B). Such an increase in the 
pair-rate response was absent in the random stream ruling out spu-
rious entrainment as a function of time (fig. S13A). Coherence at 
the pair rate was replicated across subjects, with 12 of 12 patients 
exhibiting entrainment (table S1).

As in the auditory SL, we observed an anatomical and hierarchi-
cal segregation between two temporal tuning profiles of electrodes: 
one showing significant entrainment at the fractal and pair rates 
(pair + fractal; Fig. 3D, bottom) and clustered mostly within occip-
ital (striate and extrastriate) and parietal cortex (intraparietal sulcus), 
and the other showing significant entrainment at the pair-rate only 
(pair-only; Fig. 3D, top) localized more anteriorly in frontal (middle 
and superior), parietal, and temporal cortex.

Representational analysis in visual SL
In the auditory modality, we observed representational changes in-
dicative of sequence learning based on TPs, ordinal position, and 
word identity across sets of electrodes. How do visual regularities 
shape neural representations? As learned units in the visual modality 
contained only two elements (i.e., pairs), grouping based on TPs 
and ordinal position yields similar results—both cues predict group-
ing of the first fractal in each pair with the first fractals of other pairs 
and grouping of the second fractal with the other second fractals. 
However, although both TP and ordinal position depend on grouping 
of first fractals together and second fractals together, the representa-
tional impact of these cues can be quantified in different, nonexclusive 
ways (see below). Thus, in the following, we refer to this grouping 
as consistent with either TP or ordinal position, in contrast with 
pair identity, which predicts that the first and second members of 
each pair will be grouped together and different from the other 
pairs (9). Follow-up quantification will allow to differentiate group-
ing based on TP, ordinal position, and identity.

We conducted multivariate pattern analysis on the raw FP sepa-
rately for the sets of electrodes showing pair + fractal responses and 
pair-only responses, identified through the NFT, in addition to 
electrodes in the hippocampus. We calculated the correlation dis-
tance between the spatial patterns of neural activity across elec-
trodes for every pair of fractals for each of the three electrode sets. 
We again found that the three sets of electrodes encoded different 
information. For the pair + fractal electrodes, MDS of the distances 
between fractals revealed a representation consistent with TPs (rep-
resentation of first versus second; Fig. 4A). Replicating the auditory 
findings, for pair-only electrodes, we found concurrent grouping 
for TPs and/or ordinal position (first dimension) and grouping for pair 
identity (second dimension) (Fig. 4B). In the hippocampus, however, 
grouping was only by pair identity (Fig. 4C). Clustering was not ob-
served in any electrode set for the random stream (fig. S16). However, 
in contrast to the auditory domain, evidence for fast learning during 
exposure emerged in the first block (fig. S14). These results indicate 
rapid changes in representational space as a function of visual SL.

To statistically evaluate the groupings, we collapsed pattern sim-
ilarity across fractals belonging to different classes for each elec-
trode set (pair + fractal, pair-only, and hippocampus). This allowed 
us to quantify the representational impact of each coding scheme. 
TP was examined by comparing pattern similarity among first frac-
tals (first-first) with low TP (i.e., relatively unpredictable given pre-
ceding fractal) versus among second fractals (second-second) with 
high transition probability (i.e., predictable given preceding fractal). 
Ordinal position was examined by comparing pattern similarity 
within the same position (first-first and second-second) versus be-
tween different positions (first-second). Pair identity was examined 
by comparing pattern similarity within pair (e.g., first1-second1) 
versus between pair (first1-second2).

In line with the MDS, we observed complementary coding across 
the three sets of electrodes. Pair + fractal electrodes showed greater 
similarity for low TP, but not for ordinal position or identity. In 
contrast, pair-only electrodes showed greater similarity for fractals 
with low TP (Fig. 4D, left) and reliable coding for ordinal position 
(Fig. 4D, middle) but, in contrast to the auditory modality, not for 
pair identity (Fig. 4D, right). Last, hippocampal electrodes exclu-
sively showed coding for pair identity. We further analyzed electrode 
types by field type (e.g., FP-responsive versus HGB-responsive elec-
trodes) and found these general coding strategies preserved by type 
(word + syll and word-only) and, as in the auditory domain, with 
the exception that only HGB-responsive electrodes appeared to 
provide evidence for coding by word identity (fig. S15).

DISCUSSION
Using intracranial recordings in humans, we have described how 
the brain tracks and learns structure within sensory information. SL 
is accompanied by rapid changes in neural representations, reflected 
in two functionally and anatomically distinct responses: brain re-
gions tracking lower-level sensory input (i.e., syllables and fractals) 
and higher-order units (i.e., words and pairs) and brain regions 
only representing learned higher-order units (i.e., words and pairs). 
These distinct responses reveal an anatomical hierarchy: The for-
mer maps onto early, sensory processing stages (e.g., STG and 
occipital cortex), while the latter encompasses late, amodal process-
ing stages (e.g., IFG and ATL). In other words, while early process-
ing is domain-specific, late processing is domain-general. These 
nested structures within sensory streams are extracted and repre-
sented in the brain in as little as ~2 min, consistent with previous 
behavioral studies (2), and even when subjects are not aware of 
the process.

Our results are consistent with previous work demonstrating 
how the cortical hierarchy integrates information over increasingly 
longer temporal windows (26, 27). Yet, they go beyond topograph-
ical mapping of temporal receptive fields. First, we show how SL 
shapes the neural representational space within these areas pro-
foundly and rapidly. This contrasts with the much more gradual 
representational change that occurs over development or with longer- 
term perceptual learning. Second, we discovered that qualitatively 
different aspects of sequence knowledge are encoded across differ-
ent brain areas: sites representing the sensory input and higher-order 
units encode local and generic aspects of sequences, such as their 
TPs (or degree of uncertainty). In contrast, sites exclusively repre-
senting higher-order structure encode more specific aspects of the 
sequences such as the ordinal position of the elements, but, most 
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importantly, the specific identity of the learned unit. This does not 
necessarily imply a hierarchy in terms of coding strategies, but rath-
er their coexistence in different brain networks (12). The observed 
representations were only observed in the raw FP data and not 
when the same analysis was performed on the HGB envelope (see 
figs. S8 and S17). This specifically points to low-frequency informa-
tion as a possible mechanism for encoding these representations, 
frequencies well documented to facilitate information transfer across 
the cortex and subcortical regions (28).

One interesting question for future research is to better under-
stand what is captured by NFT. Previous studies have proposed that 
frequency results might index perceptual binding of the learned 
units (17). While this mechanism could be at play for the results in 
the auditory modality, it is unclear how perceptual binding could 
work for sequentially presented visual stimuli. An alternative possi-
bility, previously discussed, is that NFT might be indexing the acti-
vation of areas with different temporal integration windows (26). In 
this account, perceptual changes attributed to perceptual binding 
could be the consequence from the underlying neural integration. 
Another alternative is that NFT tracks the increased similarity in 
the representations as a function of learning, leading to “event 
boundaries” at times in which dissimilatory is higher (7). Unfortu-
nately, given the sparse cortical sampling of ECoG and varying elec-
trode coverages across patients, at present, we cannot dissect these 
different possibilities.

Previous studies on SL suggest that an increase in predictive un-
certainty serves as the primary cue for event segmentation. Our re-
sults extend this body of work demonstrating that SL also involves 

the acquisition of higher-order sequence knowledge, i.e., ordinal 
position and identity. Higher-order structure or “chunks” may 
serve as the mental units for mapping segmented word forms onto 
novel word referents (22). These results are in line with the hypoth-
esis that the output of the word boundary discovery may provide 
cues to edges of constituents, which, in turn, can serve as scaffolding 
for the subsequent discovery of internal structure, i.e., which ele-
ments are contained and in which positions (29).

Our finding that sequences are represented at multiple levels, 
from simple and generic to complex and specific regularities, may 
reconcile two opposing theoretical models in SL. The “statistical 
model” posits that learners represent statistical relations between 
elements in the input and do not explicitly represent statistically 
coherent units in memory. In contrast, “chunking models” posit 
that learners represent statistically coherent units of information 
from the input in memory such that the stored representations are 
discrete chunks of information. So far, these models have only been 
contrasted at the behavioral level, e.g., by studying sensitivities to 
illusory or embedded units (30, 31). An intriguing possibility to be 
tested in future studies is that these two models actually coexist and 
map onto the different networks and sequence representations that 
we report here, i.e., simple representations encoding TPs and complex 
representations encoding positional information and unit identity. 
Previously reported discrepancies in behavioral results may reflect 
the differential engagement of these two neural processes across 
different tasks. Alternative mechanisms for SL can also be tested 
using the RSA approach. In particular, two theories can be tested. 
One posits that SL reflects changes in the similarity space and that 

Fig. 4. Pattern similarity results during visual SL. MDS of the distances between responses to individual fractals across (A) pair-only, (B) pair + fractal, and (C) hippo-
campal electrodes. Pairs are color-coded; odd numbers refer to the first position, and even numbers refer to the second position. Dot-dashed ellipses outline grouping by 
TP/ordinal position in pair + fractal electrodes. Solid ellipses outline grouping by TP/ordinal position in pair-only electrodes. Dashed ellipses indicate grouping by pair in 
pair-only and hippocampal electrodes. (D) Comparison of multivariate pattern similarity for fractals in the visual SL task. Left: Within versus between similarity for low 
versus high TP. Greater within-class similarity indicates stronger grouping of fractals with a low TP (0.33) over fractals with a high TP (1.0). A Friedman test indicated a main 
effect of electrode type on TP similarity (2 = 19.3, P < 0.001). Middle: Within versus between similarity for ordinal position. Greater within-class similarity indicates group-
ing of fractals holding the same first or second position in a pair. A Friedman test indicated a main effect of electrode type (2 = 122.2, P < 0.001). Right: Within versus be-
tween similarity for pair identity. Greater within-class similarity indicates grouping of fractals into pairs. A Friedman test indicated a main effect of electrode type 
(2 = 40.04, P < 0.001). ***P < 001 and *P < 0.05, Wilcoxon rank sum test; error bars denote the population SEM.
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transitions are then learned as trajectories through that space (32). 
Another account conceives SL as acquiring a community structure 
in a symmetric graph with uniform TPs, which are captured by 
changes in representational similarity (7).

The main organizational principles of neural changes underly-
ing SL are shared across the auditory and visual domain. We ob-
served a similar functional clustering of responses, i.e., sensory 
input + higher-order units and higher-order units only, in both the 
auditory and visual modalities (compare Figs. 1D with 3D). In addi-
tion, no clear hemispheric lateralization was observed for the audi-
tory or visual SL in any of the electrodes following higher-order 
units, perhaps reflecting the abstract quality of the stimuli. Never-
theless, there were also notable differences between domains: For 
instance, during the temporal evolution of SL, responses to higher- 
order units reached group-level significance faster in the visual 
domain, and with individual electrodes exhibiting significant co-
herence within 30 pairs versus 50 word exposures (see figs. S5 and 
S13). This may reflect an artificial difference in the chunk sizes (pair 
versus triplet) between the two modalities or an innate difference in 
the learning curves between the auditory and visual learning path-
ways. In addition, the cortical areas involved in auditory and visual 
SL only partially overlapped (fig. S18). This was to be expected at 
the level of the sensory responses: Responses encoding the sensory 
input and higher-order units clustered around the STG for the 
auditory SL involving syllables and around occipital cortex for the 
visual SL involving fractals. Perhaps more interestingly, areas engaged 
exclusively in higher-order unit representation were also partially 
separated. While areas such as IFG and ATL tracked higher-order 
units in both modalities, middle frontal and superior parietal corti-
ces seemed to be differentially involved in auditory and visual SL, 
respectively. This result cannot be explained by the fact that differ-
ent groups of subjects (and electrode coverage) contributed to the 
different tasks, as we confirmed this functional separation in six 
subjects who completed both auditory and visual SL tasks (fig. S18).

This suggests that while sequence operations performed across 
domains might build on similar representations (TP, ordinal posi-
tion, and identity), the circuits performing these operations might 
be modality-specific to some extent, much like the nested tree struc-
tures involved in language, music, and mathematics that are each 
represented in distinct circuits. Our results speak for a more modu-
larized representation of sequences for the encoding of local and 
simple aspects such as TP represented in sensory areas but a less 
modularized representation as complexity increases, as IFG and 
ATL encoded positional and identity information for both visual 
and auditory SL, in line with a domain-general role in SL. In turn, 
the hippocampus, at the top of the hierarchy, uniquely represents 
the identity of both visual and auditory sequences (33).

To our knowledge, the complementary representation of sequenc-
es across the cortex and the hippocampus, with a gradient of ab-
straction, has not been previously reported for SL. Our findings 
shed light on the elementary operations during SL and how cortex 
and hippocampus differentially support these processes. For instance, 
lower-level cortical coding based on TPs could facilitate initial seg-
mentation, as uncertainty drives prediction errors and boundaries. 
Coding based on TPs, while a powerful cue to discover boundaries in 
the continuous stream, does not easily accommodate the integration 
and binding across elements. Higher-order cortical encoding based 
on ordinal position permits novel recombination of elements to create 
unique entities. In this case, as long as ordinal position is respected, 

novel recombination of elements can be allowed. Last, hippocampal 
integration and binding across stable combinations of units facili-
tate the attachment of meaning or identity. Thus, a great benefit of 
the observed complementary coding across the cortex and the hip-
pocampus is that it may allow the further use of those information 
for different cognitive operations. These complementary roles of 
the cortex and the hippocampus were observed even during a brief 
exposure (<10 min). An interesting question for future research is 
to investigate the stability of these functions across longer exposure, 
and whether complementary coding persists or is replaced for a 
winner-take-all coding depending in the number of repetitions. 
Another question relates to how sleep consolidation affects these 
complementary representations.

An unexpected observation was the dissociation between “online” 
and “offline” behavioral measures of SL. Through frequency tagging, 
we were able to localize with precision the areas involved in the ac-
quisition of higher-order regularities in the structured stream—a 
response found in virtually all participants and that increased as a 
function of exposure. Furthermore, representational analysis demon-
strated learning of TP, ordinal position, and unit identity after short 
exposure. Faster reaction times during the cover task showed that 
structured stream presentation facilitated learning behavior. Yet, 
the patients did not perform better than chance in the subsequent 
“offline” behavioral recognition test. In neurotypical subjects, how-
ever, we observed facilitation in the reaction time in the structured 
stream and subsequent above-chance recognition performance in 
the offline behavioral task. In other words, cortical circuits for auto-
matic SL appear intact in our patients, while episodic memory 
appears impaired. Episodic memory dysfunction is prevalent in 
temporal lobe epilepsy (34). One aspect worth considering relates to 
the validity of the indirect, online tasks to measure learning, be-
cause they have been recently called into question (35). Changes in 
reaction time (RT) have been attributed to confounds, i.e., serial 
order in short sequences with clear onsets and/or anchoring cues. 
While this confound might play a role in certain tasks, it is unlikely 
to explain our results for several reasons: In our materials, the onset 
and offset of each sequence was ramped to prevent a clear anchor-
ing effect effectively removing a cue for serial order; also, subjects 
performed the RT task during the 2-min-long sequence and not just 
over a couple of exemplar token as done in other studies. Further-
more, repetitions were inserted in both the random and structured 
stream, preserving the order in the long list. With all those controls 
at hand, we believe our results index learning in both the patient 
and neurotypical population, making the dissociation all the more 
relevant when considering that NFT correlated only with learning 
in the online and not in the offline task.

Relatedly, the fact that we observed SL in patients with epilepsy 
may challenge the importance of the medial temporal lobe and hip-
pocampus for SL. Previous functional magnetic resonance imaging 
(fMRI) studies in healthy subjects have demonstrated that visual SL 
leads to changes in representational similarity in the hippocampus 
(9), which we also observed in our population of patients. The crit-
ical role of the hippocampus has been corroborated by lesion stud-
ies in humans in visual and auditory SL (10, 23). Computational 
models indicate a division of labor in the hippocampus between the 
monosynaptic pathway (connecting entorhinal cortex directly to CA1), 
which supports SL, and the trisynaptic pathway (connecting ento-
rhinal cortex to CA1 through dentate gyrus and CA3), which sup-
ports episodic memory (36). Given that epilepsy can lead to selective 
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deficits in hippocampal circuits (37), the observed dissociation 
between online and offline behavioral measures of SL could reflect 
disproportionate damage to the trisynaptic pathway.

The dissociation between online and offline behavioral mea-
sures is also noteworthy given the large variability observed when 
SL is measured through explicit behavioral tasks (38). NFT may 
provide a more sensitive and robust measure of learning compared 
to explicit tasks, even in healthy populations. One limitation of this 
technique, and intracranial recordings in general, is the inability to per-
form meaningful comparisons across subjects (e.g., brain-behavior 
correlation) to investigate whether the strength of NFT is directly 
related to behavioral outcomes (i.e., explicit recognition). While we 
did observe a significant relationship between the strength of neural 
entrainment and online reaction times, we did not observe any rela-
tionship with offline recognition (figs. S3 and S11). Because of dif-
ferences in electrode coverage across patients, it was not possible to 
determine whether the lack of brain-behavior correlation with the 
offline measure of learning is due solely to disparate sampling of the 
cortex, and we therefore urge caution when interpreting these re-
sults. However, this technique opens up exciting opportunities to 
characterize learning trajectories across clinical and healthy popu-
lations, across sensory modalities. Because NFT does require task 
demands, it is well suited to tracking the acquisition of sequence 
knowledge across the life span from newborns to the elderly and 
even in cognitively impaired patients. The combination of NFT 
with RSA provides a powerful toolkit to reveal how the brain en-
gages in SL rapidly across multiple levels of organization in the 
human brain.

MATERIALS AND METHODS
Stimulus materials and summary of experimental 
procedures
Auditory SL task
Twelve consonant-vowel syllables were synthetically generated us-
ing MacTalk. Syllable lengths were equated, and prosody was flat-
tened using Praat (39). The individual syllables were concatenated 
in MATLAB. Two sequences were created: a structured and a ran-
dom sequence. In the structured sequence, TPs between syllables 
were manipulated such that four hidden words (three syllables 
each) were embedded in the sequence (see Fig. 1), resulting in a 
continuous artificial language stream with an underlying syllable 
presentation rate of 4 Hz and word rate of 1.33 Hz. In the random 
sequence, TPs across syllables were the same (e.g., P = 1/11 sylla-
bles). Each sequence lasted approximately 2 min (540 syllable pre-
sentations) and was presented five times. To avoid potential cueing 
of the words at the start and end of the stream, the volume of the 
audio stream was ramped on and off, over the first and last 1.5 s, 
respectively. Participants were not informed of the structure, and 
instead, to ensure task compliance, participants were asked to per-
form a cover task in which they indicated syllable repetitions that 
were randomly embedded in the auditory streams. Sixteen syllable 
repetitions were randomly embedded into each presentation block 
of a sequence.

Once both streams (random and structured) had been played to 
the participants, they were then informed that one of the audio 
streams consisted of a hidden structure containing four “words.” A 
“word” was defined to the participants as a three-syllable nonsense 
word that was repeated in the stream. Subjects then performed a 

2AFC task where they listened to two audio segments, presented 
one after the other, and asked to select the one containing one of the 
hidden words. One audio segment contained one of the words (e.g., 
“tupiro”) that was embedded in the structured sequence, while the 
other segment was a lower probability “part-word” from the structured 
stream that spanned word boundaries (e.g., “labutu” composed of 
golabu + tupiro). Sixteen trials, consisting of all possible word versus 
part-word combinations, were presented. Presentation order of the 
word in the first and second audio segments was counterbalanced 
across trials. Because exposure to the individual syllables is equated, 
a preference for the true words over the part-word is indicative of SL.
Visual SL task
The procedure for the visual SL task was identical to the auditory SL 
task; however, in this task, sequences were formed from eight frac-
tals (four sets of two fractal pairs, duplets). Fractals were taken from 
the same set of images previously used in (9). The stimulus-onset 
asynchrony between fractals was set to 375, whereby each fractal 
was presented for 233 ms with an interstimulus interval of 150 ms. 
In the structured sequence, TPs between fractals were manipulated 
such that four hidden fractal pairs (two fractal each) were embed-
ded in the sequence (see Fig. 3), resulting in a continuous stream of 
fractals with a presentation rate of 2.6 Hz and a fractal-pair rate of 
1.3 Hz. In the random sequence, TPs remained fixed between all 
possible fractals (e.g., P = 1/7). Each sequence lasted approximately 
2 min (360 fractal presentations). As in the auditory learning task, 
participants were not informed of the structure; however, to ensure 
task compliance, participants were asked to perform a cover task in 
which they indicated, using the keyboard, when a fractal had been 
repeated. Sixteen fractal repetitions were randomly embedded within 
each sequence block. After exposing participants to both streams 
(random and structured), the experimenter disclosed to them that 
one stream contained four pairs of fractals forming a duplet that 
repeated across the stream. Participants then completed 16 two- 
alternative forced-choice test trials, in which they judge the relative 
familiarity of a duplet from the exposure phase compared to a foil 
composed of a pair of fractals that spanned the pair boundary (e.g., 
fractals 1 to 2 versus 4 to 6).

Participants and recordings
Electrocorticography
ECoG recordings were obtained from a total of 23 patients (13 fe-
male, average age of 35 years, range of 16 to 59 years, 21 right-handed) 
with drug-resistant focal epilepsy undergoing clinically motivated 
invasive monitoring at the Comprehensive Epilepsy Center of the 
New York University Langone Medical Center. Eleven subjects par-
ticipated in the auditory SL only, 6 subjects in the visual SL only, 
and 6 subjects participating in both the auditory and visual SL task. 
All subjects participating in the study provided oral and written in-
formed consent before participation in the study, in accordance 
with the Institutional Review Board (IRB) at the New York University 
Langone Medical Center. Patients were informed that participation 
in the study would not affect their clinical care and that they could 
withdraw from the study at any point without affecting medical 
treatment. Brain activity was recorded from a total of 3689 (average 
of 120 ± 30 per subject) intracranially implanted subdural platinum- 
iridium electrodes embedded in silastic sheets (2.3-mm-diameter 
contacts, Ad-Tech Medical Instrument). The decision to implant, 
electrode targeting, and the duration of invasive monitoring were 
determined solely on clinical grounds without reference to this or 
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any other study. Macroelectrodes were arranged as grid arrays 
(8 × 8 contacts, 10- or 5-mm center-to-center spacing), linear strips 
(1 × 8/12 contacts), or depth electrodes (1 × 8/12 contacts), or some 
combination thereof. Subdural electrodes covered extensive por-
tions of lateral and medial frontal, parietal, occipital, and temporal 
cortex of the left and/or right hemisphere (see fig. S1 for electrode 
coverage across all subjects and for the individual coverage of each 
subject). Recordings from grid, strip, and depth electrode arrays 
were acquired using a NicoletOne C64 clinical amplifier (Natus 
Neurologics, Middleton, WI), bandpass-filtered from 0.16 to 250 Hz, 
and digitized at 512 Hz. Intracranial EEG signals were referenced to 
a two-contact subdural strip facing toward the skull near the crani-
otomy site. Data were subsequently downsampled to 250 Hz, and a 
60-Hz notch filter was applied to remove any line-noise artifacts. 
All electrodes were visually inspected; those with excessive noise ar-
tifacts were removed from subsequent analysis (185 of 3689 elec-
trodes removed).

Data analysis
ECoG surface reconstruction and electrode localization
Presurgical and postsurgical T1-weighted MRIs were acquired for 
each patient, and the location of the electrode relative to the cortical 
surface was determined from co-registered MRIs following the pro-
cedure described by Yang and colleagues (40). Co-registered, skull-
stripped T1 images were nonlinearly registered to an MNI-152 
template, and electrode locations were then extracted in Montreal 
Neurological Institute (MNI) space (projected to the surface) using 
the co-registered image. A three-dimensional reconstruction of 
each patient’s brain was computed using FreeSurfer (http://surfer.
nmr.mgh.harvard.edu). In all figures, electrode locations are pro-
jected onto the left hemisphere of the MNI-152 template brain, un-
less otherwise noted.

Behavioral data analysis
Performance during the online incidental task was assessed by cal-
culating a d′ score for every participant across all five exposure 
trials. As the incidental task was embedded in the continuous 
stream of auditory or visual stimuli, detection of a syllable or image 
repetition was deemed accurate (“hit”) if the participant made a 
keyboard response within 250 to 1500 ms of the occurrence of the 
repetition (results are robust to the selection of the response win-
dow, as comparable results were obtained using response windows 
up to 750, 1000, and 3000 ms). All other keyboard responses outside 
the valid response window were deemed false alarms. Significance 
of d′ scores were assessed via a one-sample t test, and comparison of 
d′ scores across conditions (structured versus random) was assessed 
with a paired t test. Analysis of reaction times between conditions 
was assessed using a Wilcoxon two-sided paired signed-rank test 
between the average reaction times per condition and participant. 
Four participants who participated in the visual SL task were ex-
cluded from this analysis: three for excessive button pressing, and 
one who did not perform this task because they were confused 
about the task directives. Performance on the offline 2AFC explicit 
recognition test was assessed by determining the percentage of cor-
rectly identified “words” or “fractal pairs” and subjected to a Wilcoxon 
signed-rank test against chance performance (50%). Two of the 
17 patients who participated in the auditory SL experiment did not 
complete the 2AFC task: one for technical reasons and one because 
the participant was confused about the task. One of the 12 patients 

who participated in the visual SL experiment did not complete the 
2AFC task because the participant was confused about the task.

NFT (phase coherence analysis)
The main hypothesis of this study was that SL could identified 
by tagging electrodes that were entrained at the fundamental unit 
frequency [e.g., word rate and pair rate; see (15, 41)]. Therefore, we 
used phase coherence analysis as a means to identify (“tag”) elec-
trodes that exhibited significant phase coherence at the funda-
mental unit frequency at 1.33 Hz. For each experiment, the raw 
signals (FPs) from all five blocks of a sequence (structured or ran-
dom) were concatenated and then reshaped into 10-word segments 
(10 words × 90 trials × electrodes) and converted into the frequency 
domain via fast Fourier transform (0.134-Hz resolution). Phase co-
herence was computed for each electrode,   R   2  =  [ ∑  N    cos ∅ ]   2  +  
[ ∑  N    sin ∅ ]   2  , over the 90 trials (42). Significance of the response at 
each frequency of interest (e.g., 1.33 and 4 Hz) was determined by 
comparing the magnitude of the coherence response to 1000 phase- 
shuffled surrogate datasets and then subjected to false discovery 
rate (FDR) correction across all electrodes per subject using the 
Benjamini-Hochberg procedure (43). Using this technique, we 
identified FP responsive in all electrodes across all subjects that ex-
hibited a significant peak at 1.33 Hz (criterion for electrode selec-
tion, P < 0.05 after FDR correction). From this set of electrodes, we 
identified two subsets of responses: electrodes that exhibited a sig-
nificant peak at the unit + stimulus (e.g., word + syll and pair + 
fractal) and electrodes that only exhibited a significant peak in 
phase coherence spectrum at the fundamental unit rate (e.g., word- 
only and pair-only). The same analysis was performed on the enve-
lope of the HGB signals, extracted using eight semi-logarithmically 
spaced constant-Q Morlet wavelet filters (center frequencies be-
tween 70 and 150 Hz), subsequently averaged across frequency 
bands and taking the absolute value of the Hilbert transform of 
the averaged response, identifying a set of HGB-responsive elec-
trodes for further analysis. Because ECoG recordings cannot be 
averaged across subjects, we pooled all identified FP- and HGB- 
responsive electrodes across subjects. We later control for the ef-
fects of individual electrodes using a random resampling technique 
(see the “Within versus between category similarity analysis”  
section).

Localization and region of interest analysis
Electrodes identified by the NFT as responsive were plotted on a 
standard brain using the MNI coordinates. The number of respon-
sive electrodes per subject and per field type (FP and HGB) was 
analyzed per region of interest (ROI) based on the Desikan-Killiany 
cortical atlas (figs. S4 and S12) (44). To better understand which re-
gions of the brain showed these word-rate and pair-rate respons-
es, we grouped electrodes in six major ROIs and analyzed the 
proportion of electrodes that were found to be responsive in a 
given ROI. We then compared these proportions across ROIs 
and calculated the odds ratio of a given ROI contributing more 
responsive electrodes than another (figs. S4 and S12). This provides 
an estimate of which brain regions are more or less active during  
the task.

Phase coherence latency analysis
The response latency was computed for all responsive electrodes 
with a significant phase coherence at the higher-order rate (i.e., 
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word rate or pair rate, 1.33 Hz) determined across all blocks. To 
identify a time point when each electrode exhibited an initial signif-
icant response (e.g., time to first significant response), phase coher-
ence was computed by sequentially adding in trials (10 words per 
trial) and evaluating the phase consistency at 1.33  Hz using a 
Rayleigh test (45). The time point (in number of words, e.g., trials) 
at which each electrode reached significance (FDR-corrected across 
all tested electrodes) was estimated for each electrode (see figs. S5B 
and S13B). In addition, P values were averaged across all responsive 
electrodes and compared across task conditions (structured versus 
random) to access differences in phase coherence across conditions 
(figs. S5A and S13A).

Representational similarity analysis
To assess the similarity of neural responses to each token (syllables 
and fractals), a multivariate spatial pattern analysis was performed 
on all responsive electrodes (FP-responsive + HGB-responsive). First, 
all individual trials were “whitened” by the noise covariance matrix 
computed across all tokens and trials (46), and the average response 
across all tokens (e.g., nonspecific response) was subtracted from 
each trial. Next, the data were vectorized across all responsive elec-
trodes (e.g., samples × significant electrodes) within an electrode 
subtype (e.g., word + syll or word-only), and the dissimilarity of the 
spatial pattern vectors was computed between each pair of tokens. 
Dissimilarity was assessed using cross-validated correlation distance 
between tokens (e.g., syllables “tu” versus “pi”), and using fivefold 
cross-validation. All neural responses to tokens (e.g., trials) were 
split into five folds, using 20% of the data in a fold as the validation 
set. For each fold, a cross-validated correlation distance was com-
puted, where the pattern vectors of one partition (the training set) 
are projected onto the pattern vectors of an independent dataset 
validation set (46). The resultant representational dissimilarity ma-
trix was subjected to a principal components analysis, and the first 
two dimensions were plotted to produce a two-dimensional visual-
ization of dissimilarity scores across all pairs (see Fig. 2). Subse-
quently, quantification of the representational spaces (i.e., similarity 
of neural responses between tokens) was estimated by comparing 
within versus between category similarity using hypothesized mod-
els of feature encoding (see the next section).

Within versus between category similarity analysis
To quantify the degree to which responses are able to capture fea-
tures of the learned streams, i.e., TP, ordinal position, and/or iden-
tity, we calculated the difference in similarity (Pearson correlation) 
between items in the same category and items belonging to the other 
category in question. To control for the effects of any one electrode 
driving the similarity, this estimate was calculated by randomly 
sampling the responsive electrodes by type (e.g., FP and word-only) 
and computing a similarity matrix between all tokens (e.g., syllables 
or fractals), for each resampling. This resampling procedure was 
repeated 200 times (with replacement), and the average Fisher- 
transformed correlations of all elements within the same category 
(within category) were compared against all items that spanned an 
opposing category (between category) using a Wilcoxon rank sum 
test (two-sided). For example, in assessing ordinal position coding 
with three tokens per word (i.e., auditory task), the similarity be-
tween token pairs within the same category (e.g., all first position 
comparisons, all second position comparisons, and all third posi-
tion comparisons) were compared to the similarity of token pairs 

that crossed between this category (first position versus second po-
sition, first position versus third position, etc.). To evaluate TP coding, 
all token pairs with the same low TP (all first position comparisons, 
within category) were compared against all token pairs with high 
TP (all second position comparisons + all second position − third 
position comparisons, between category). For identity coding, the 
similarity between token pairs within the same word (within cate-
gory) was compared to the similarity between all tokens that spanned 
different words (between category), excluding all ordinal position 
comparisons (all first position comparisons, all second position com-
parisons, etc.). See fig. S19 for a visualization of the within-category 
versus between-category comparisons.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/8/eabc4530/DC1

View/request a protocol for this paper from Bio-protocol.
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