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Drawing is a powerful tool that can be used to convey rich perceptual information about objects in the world. What are the neural
mechanisms that enable us to produce a recognizable drawing of an object, and how does this visual production experience influence how
this object is represented in the brain? Here we evaluate the hypothesis that producing and recognizing an object recruit a shared neural
representation, such that repeatedly drawing the object can enhance its perceptual discriminability in the brain. We scanned human
participants (N = 31; 11 male) using fMRI across three phases of a training study: during training, participants repeatedly drew two
objects in an alternating sequence on an MR-compatible tablet; before and after training, they viewed these and two other control objects,
allowing us to measure the neural representation of each object in visual cortex. We found that: (1) stimulus-evoked representations of
objects in visual cortex are recruited during visually cued production of drawings of these objects, even throughout the period when the
object cue is no longer present; (2) the object currently being drawn is prioritized in visual cortex during drawing production, while other
repeatedly drawn objects are suppressed; and (3) patterns of connectivity between regions in occipital and parietal cortex supported
enhanced decoding of the currently drawn object across the training phase, suggesting a potential neural substrate for learning how to
transform perceptual representations into representational actions. Together, our study provides novel insight into the functional
relationship between visual production and recognition in the brain.
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Humans can produce simple line drawings that capture rich information about their perceptual experiences. However, the mech-
anisms that support this behavior are not well understood. Here we investigate how regions in visual cortex participate in the
recognition of an object and the production of a drawing of it. We find that these regions carry diagnostic information about an
object in a similar format both during recognition and production, and that practice drawing an object enhances transmission of
information about it to downstream regions. Together, our study provides novel insight into the functional relationship between
visual production and recognition in the brain. j

ignificance Statement

actively control how we engage with our visual environment.
For example, people can select which information to encode by
shifting their attention (Chun etal., 2011) and can convey which
information was encoded by producing a drawing that highlights
this information (Draschkow et al., 2014; Bainbridge et al., 2019).

Introduction
Although visual cognition is often studied by manipulating ex-
ternally provided visual information, this ignores our ability to
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Prior work has provided converging, albeit indirect, evidence that
the ability to produce informative visual representations, which
we term visual production, recruits general-purpose visual
processing mechanisms that are also engaged during visual
recognition (James, 2017; Fan et al., 2018). The goal of this paper
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Figure 1.

drawing period (i.e., 23 TRs).

is twofold: (1) to more directly characterize the functional role of
visual processing mechanisms during visual production; and (2)
to investigate how repeated visual production influences neural
representations that serve perception and action.

With respect to the first goal, our study builds on prior studies
that provided evidence for shared computations supporting vi-
sual recognition and visual production. For example, recent work
has found that activation patterns in human ventral visual stream
measured using fMRI (Walther et al., 2011), as well as activation
patterns in higher layers of deep convolutional neural network
models of the ventral visual stream (Yamins et al., 2014; Fan et al.,
2018), support linear decoding of abstract category information
from drawings and color photographs. To what extent are these
core visual processing mechanisms also recruited to produce a
recognizable drawing of those objects? Initial insights bearing on
this question have come from human neuroimaging studies in-
vestigating the production of handwritten symbols (though not
drawings of real-world objects), revealing general engagement of
visual regions during both letter production and recognition
(James and Gauthier, 2006; Vinci-Booher et al., 2019). However,
the format and content of the representations active in these
regions during visual production are not yet well understood.

With respect to the second goal, we build on prior work that
has investigated the consequences of repeated visual production.
In a recent behavioral study, participants who practiced drawing
certain objects produced increasingly recognizable drawings and
exhibited enhanced perceptual discrimination of morphs of
those objects, suggesting that production practice can refine the
object representation used for both production and recognition
(Fan et al., 2018). These findings resonate with other evidence
that visual production can support learning, including mainte-

control
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Stimuli, task, and experimental procedure. A, Four 3D objects were used in this study: bed, bench, chair, and table.
Each participant was randomly assigned two of these objects to view and draw repeatedly (trained); the remaining two objects
were viewed but never drawn (control). B, Before and after the production phase, participants viewed all objects while performing
a 2AFCrecognition task. C, On each trial of the recognition phase, one of the four objects was briefly presented (1000 ms), followed
by a 900 ms response window. On each trial of the production phase, one trained object was presented (3 s), followed by an 35 s
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nance of recently learned information
(Wammes et al., 2016) and enhanced rec-
ognition of novel symbols (Longcamp et
al., 2008; James and Atwood, 2009; Li and
James, 2016). Previous fMRI studies that
have investigated the neural mechanisms
underlying such learning have found en-
hanced activation in visual cortex when
viewing previously practiced letters
(James and Gauthier, 2006; James, 2017),
and increased connectivity between visual
and parietal regions following handwrit-
ing experience (Vinci-Booher et al,
2016). However, these studies have fo-
cused on univariate measures of BOLD
signal amplitude within regions or when
analyzing connectivity, raising the ques-
tion of whether these changes reflect the
recruitment of similar representations
across tasks or of colocated but function-
ally distinct representations for each task.

In the current study, we evaluate the
hypothesis that producing and recogniz-
ing an object recruit a shared neural rep-
resentation, such that repeatedly drawing
the object can enhance its perceptual dis-
criminability in the brain. Our approach
advances prior work that has investigated
the neural mechanisms underlying pro-
duction and recognition in two ways: (1)
we analyze the pattern of activation across
voxels to measure the expression and rep-
resentation of object-specific information; and (2) we investigate
production-related changes to the organization of object repre-
sentations, specifically changes in patterns of voxelwise connec-
tivity among ventral and dorsal visual regions as a consequence of
production practice.

recognltlon (post

2 runs (u | objects)

Materials and Methods

Participants

Based on initial piloting, we developed a target sample size of 36 human
participants, across whom all condition and object assignments would be
fully counterbalanced. Participants were recruited from the Princeton,
New Jersey community, were right-handed, and provided informed con-
sent in accordance with the Princeton Institutional Review Board. Of the
39 participants who were recruited, 33 participants successfully com-
pleted the session. After accounting for technical issues during data ac-
quisition (e.g., excessive head motion), data from 31 participants (11
male, 23.2 years) were retained.

Stimuli

Four objects from the furniture category were used in this study, based on
aprior study (Fan etal., 2018): bed, bench, chair, and table. These objects
were represented by 3D mesh models constructed in Autodesk Maya to
contain the same number of vertices and the same brown surface texture,
and thereby share similar visual properties apart than their shape (Fig.
1A). Each of these objects was rendered from a 10° viewing angle (i.e.,
slightly above) at a fixed distance on a gray background in 40 viewpoints
(i.e., each rotated by an additional 9° about the vertical axis).

Experimental design

Each participant was randomly assigned two of the four objects to prac-
tice drawing repeatedly (“trained” objects). The remaining two objects
(“control” objects) provided a baseline measure of changes in neural
representations in the absence of drawing practice. At the beginning of
each session and outside of the scanner, participants were familiarized
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with each of the four objects while being briefed on the overall experi-
mental procedure. There were four phases in each session (Fig. 1 B, C), all
of which were scanned with fMRI: initial recognition (two runs), pre-
practice recognition (two runs), production practice (four runs), and a
postpractice recognition phase (two runs).

Recognition task

Within each of the three recognition phases, participants viewed all four
objects in all 40 viewpoints once each and performed an object identifi-
cation cover task. Repetitions of each object were divided evenly across
the two runs of each phase, and in a random order within each run,
interleaved with other objects. On each recognition trial, participants
were first presented with one of the objects (1000 ms). The object then
disappeared, and two labels appeared below the image frame, one of
which corresponded to the correct object label. Participants then made a
speeded forced-choice judgment about which of the two objects they saw
by pressing one of two buttons corresponding to each label within a 900
ms response window. The assignment of labels to buttons was random-
ized across trials. Participants did not receive accuracy-related feedback
but received visual feedback if their response was successfully recorded
within the response window (selected button highlighted). Interstimulus
intervals were jittered from trial to trial by sampling from the following
durations, which appeared in a fixed proportion in each run to ensure
equal run lengths: 3000 ms interstimulus interval (40% trials/run), 4500
ms (40%), 6000 ms (20%). Each run was 6 min in length, and no object
appeared in the first or final 12 s of each run.

Production task

Participants produced drawings on a pressure-sensitive MR-compatible
drawing tablet (Hybridmojo) positioned on their lap by using an MR-
compatible stylus, which they held like a pencil in the right hand. Before
the first drawing run, participants were familiarized with the drawing
interface. They practiced producing several closed curves approximately
the size of the drawing canvas, to calibrate the magnitude of drawing
movements on the tablet (which they could not directly view) to the
length of strokes on the canvas. They also practiced drawing two other
objects of their choice, providing them with experience drawing more
complex shapes using this interface. When participants did not sponta-
neously generate their own objects to draw, they were prompted to draw
a house and a bicycle.

In each of the four runs of the production phase, participants drew
both trained objects 5 times each in an alternating order, producing a
total of 20 drawings of each object. Each production practice trial had a
fixed length of 45 s. First, participants were cued with one of the trained
objects (3000 ms). Following cue offset and a 1000 ms delay, a blank
drawing canvas of the same dimensions appeared in the same location.
We refer to the trained object currently being drawn as the target object,
and to the other trained object not currently being drawn as the foil
object. Participants then used the subsequent 35 s to produce a drawing
of the object before the drawing was automatically submitted. Following
drawing submission, the canvas was cleared, and there was a 6000 ms
delay until the presentation of the next object cue. Participants were cued
with 20 distinct viewpoints of each trained object in a random sequence
(18° rotation between neighboring viewpoints), were instructed to draw
each target object in the same orientation as in the image cue, and did
not receive performance-related feedback. Each run was 7.7 min in
length and contained rest periods during the first 12 s and final 45 s of
each run.

Statistics

We primarily used nonparametric analysis techniques (i.e., bootstrap
resampling) to estimate parameters of interest (Efron and Tibshirani,
1994), and provide 95% CIs for these parameter estimates. We favored
this approach due to its emphasis on estimation of effect sizes, by contrast
with the dichotomous inferences yielded by traditional null-hypothesis
significance tests (Cumming, 2014). Furthermore, all applications of lo-
gistic regression-based classification on fMRI data to derive these param-
eter estimates were conducted in a cross-validated manner. Changes in
classifier output over time were fit with linear mixed-effects regression
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models (Bates et al., 2015), which included random intercepts for differ-
ent participants.

fMRI data acquisition

All fMRI data were collected on a 3T Siemens Skyra scanner with a
64-channel head coil. Functional images were obtained with a multiband
EPI sequence (TR = 1500 ms, TE = 30 ms, flip angle = 70°, acceleration
factor = 4, voxel size = 2 mm isotropic), yielding 72 axial slices that
provided whole-brain coverage. High-resolution T1-weighted anatomi-
cal images were acquired with an MPRAGE sequence (TR = 2530 ms,
TE = 3.30 ms, voxel size = 1 mm isotropic, 176 slices, 7° flip angle).

fMRI data preprocessing

fMRI data were preprocessed with FSL (http://fsl.fmrib.ox.ac.uk). Func-
tional volumes were corrected for slice acquisition time and head mo-
tion, high-pass filtered (100 s period cutoff), and aligned to the middle
volume within each run. For each participant, these individual run-
aligned functional volumes were then registered to the anatomical T1
image, using boundary-based registration. All participant-level analyses
were performed in participants’ own native anatomical space. For group-
level analyses and visualizations, functional volumes were projected into
MNI standard space.

fMRI data analysis

Head motion. Given the distal wrist/hand motion required to produce
drawings, it was important to measure and verify that there was not
extreme head motion during drawing production relative to rest periods
(i.e., cue presentation, and delay). For each production run, the time
courses for estimated rotations, translations, and absolute/relative dis-
placements were extracted from the output of MCFLIRT. Functional
data were partitioned into production (i.e., the 23 TRs spent drawing in
each TR) and rest (i.e., during cue presentation or delay between trials)
volumes. We found that there was no difference in rotational movement
between production and rest periods (mean = —0.0001; 95% CI =
[—0.0003, 0.0001]). Indeed, there was reliably less head movement dur-
ing production relative to rest, as measured by translation (mean =
—0.006; 95% CI = [—0.011, —0.002]), absolute (mean = —0.027; 95%
CI = [—0.054, —0.004]), and relative displacement (mean = —0.016;
95% CI = [—0.024, —0.008]).

Defining ROIs in occipitotemporal cortex. We focused our analyses on
nine ROIs in occipitotemporal cortex: V1, V2, lateral occipital cortex
(LOC), fusiform (FUS), inferior temporal lobe (IT), parahippocampal
cortex (PHC), perirhinal cortex (PRC), entorhinal cortex (EC), and hip-
pocampus (HC). These regions were selected based on prior evidence for
their functional involvement in visual processing. For instance, neurons
in V1 and V2 are tuned to the orientation of perceived contours, which
constitute simple line drawings and also often define the edges of an
object (Hubel and Wiesel, 1968; Gegenfurtner et al., 1996; Kamitani and
Tong, 2005; Sayim and Cavanagh, 2011). Likewise, neural populations in
higher-level ventral regions, including LOC, FUS, and IT, have been
shown to play an important role in representing more abstract invariant
properties of objects (Gross, 1992; Grill-Spector et al., 2001; Kourtzi and
Kanwisher, 2001; Hung et al., 2005; Rust and DiCarlo, 2010), with medial
temporal regions including PHC, PRC, EC, and HC participating in both
online visual processing, as well as the formation of visual memories
(Murray and Bussey, 1999; Epstein et al., 2003; Davachi, 2006; Schapiro
et al., 2012; Garvert et al., 2017). Masks for each ROI were defined in
each participants’ T1 anatomical scan, using FreeSurfer segmenta-
tions (http://surfer.nmr.mgh.harvard.edu/).

Defining production-related regions in parietal cortex and precentral
gyrus. Motivated by prior work investigating visually guided action
(Goodale and Milner, 1992; Vinci-Booher et al., 2019), we also sought to
analyze how sensory information represented in occipital cortex is re-
lated to downstream regions associated with action planning and execu-
tion, including parietal and motor cortex. Accordingly, ROI masks for
parietal cortex and precentral gyrus were also generated for each partic-
ipant based on their Freesurfer segmentation. To determine which voxels
across the whole brain were specifically engaged during production, a
group-level univariate activation map was estimated, contrasting pro-
duction versus rest. To derive these production task-related activation
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Measuring object evidence in activation patterns during recognition and production. 4, For each participant, anatomical ROIs were defined using FreeSurfer. Activation patterns across

voxels in each ROl were extracted for each recognition trial and for all time points of each production trial. These activation patterns can be expressed as vectorsin a k-dimensional vector space, where
kreflects the number of voxelsin a given ROI. B, Evidence for each object was measured using a 4-way logistic regression classifier trained on activation patterns from recognition runs to predict the
current object being viewed or drawn (e.g., bed), and discriminate it from the other three objects (i.e., bench, chair, table). This classifier can be used to measure both the general expression of
object-specific information, measured by classification accuracy, as well as the degree of evidence for particular objects, measured by the probabilities it assigns to each. €, To measure object
evidence during recognition, this classifier was trained in a runwise cross-validated manner within each of the preproduction and postproduction phases. To measure object evidence during

production, the same type of classifier was trained on data from the initial recognition phase.

maps, we analyzed each production run with a GLM. Regressors were
specified for each trained object by convolving a boxcar function, reflect-
ing the total amount of time spent drawing (i.e., 23 TRs, or 34.5 s), with
a double-gamma hemodynamic response function (HRF). A univariate
contrast was then applied, with equal weighting on the regressors for each
trained object, to determine the clusters of voxels that were preferentially
active during drawing production, relative to rest. Voxels that exceeded a
strict threshold (Z = 3.1) and also lay within the anatomically defined
ROI boundaries (i.e., in occipital cortex, parietal cortex, or precentral
gyrus) were included.

To avoid statistical dependence between this procedure used for
voxel selection and for subsequent classifier-based analyses, we defined
participant-specific activation maps in a leave-one-participant-out fash-
ion. That is, a held-out participant’s production mask was constructed
based solely on the basis of task-related activations from all remaining
participants. Once each participant’s mask was defined, we took the in-
tersection between this map and the participant’s own anatomically de-
fined cortical segmentation to construct the production-related ROIs in
V1, V2, LOC, parietal cortex, and precentral gyrus). We had no a priori
predictions about hemispheric differences, so ROI masks were collapsed
over the left and right hemispheres.

Measuring object evidence during recognition and production phases.
To quantify the expression of object-specific information throughout
recognition and production, we analyzed the neural activation patterns
across voxels associated with each object (Haxby et al., 2001; Kamitani
and Tong, 2005; Norman et al., 2006; Cohen et al., 2017). Specifically, we
extracted neural activation patterns evoked by each object cue during
recognition, measured 3 TRs following each stimulus offset to account
for hemodynamic lag. We used these patterns to train a 4-way logistic
regression classifier with L2 regularization to predict the identity of the
current object in either held-out recognition data or production data.
This procedure was performed separately in each ROI in each partic-
ipant, and all raw neural activation patterns were z-scored within
voxel and within run before be used for either classifier training or
evaluation.

To measure object evidence during recognition, we applied the classi-
fier in a twofold cross-validated fashion within each of the preproduction
and postproduction phases, such that, for each fold, the data from one
run were used as training whereas the data from the other run were used
for evaluation. Aggregating predictions across folds, we computed the
proportion of recognition trials on which the classifier correctly identi-
fied the currently viewed object, providing a benchmark estimate of how
much object-specific information was available from neural activation
patterns during recognition. We constructed 95% CIs for estimates of
decoding accuracy for each ROI by bootstrap resampling participants
10,000 times.

To measure object evidence during production, we trained the same
type of classifier exclusively on data from the initial recognition phase,
which minimized statistical dependence on the classifier based on pre-
production and postproduction phases. We then evaluated this classifier
on every time point while participants produced their drawings, which
consisted of the 23 TRs following the offset of the image cue, shifted
forward 3 TRs to account for hemodynamic lag (Fig. 2).

Because this type of classifier assigns a probability value to each object,
it can be used to evaluate the strength of evidence for each object at each
time point. To evaluate the degree to which the currently drawn object
(target) was prioritized, we extracted the classifier probabilities assigned
to the target, foil, and two control objects on each TR during drawing
production. We then used these probabilities to derive metrics that quan-
tify the relative evidence for one object compared with the others. Spe-
cifically, we define “target selection” as the log-odds ratio between the
target and foil objects (In[p(target)/p(foil)]), which captures the degree
to which the voxel pattern is more diagnostic of the target than the foil.
We define “target evidence” as the log-odds ratio between the target and
the mean natural-log probabilities assigned to the two control objects for
each time point, which captures the degree to which the voxel pattern is
more diagnostic of the target than the baseline control objects. We like-
wise define “foil evidence” as the log-odds ratio between the foil object
and the mean natural log probabilities for the 2 control objects, which
captures the degree to which the voxel pattern is more diagnostic of the
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ANALYZE VOXEL CONNECTIVITY PATTERNS BETWEEN ROIS DURING PRODUCTION
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Measuring object evidence in connectivity patterns between regions during production. 4, Voxels in each of several anatomical ROIs (i.e., V1, V2, LOC, parietal, precentral)

that were also consistently engaged during the production task were included in this analysis. To determine which voxels were consistently engaged during production, while minimizing
statistical dependence between voxel selection and multivoxel pattern analysis, a production task-related activation map was generated in a leave-one-participant-out manner. B,
Connectivity patterns were computed for each trial, for each pair of ROIs. Each connectivity pattern consists of the set of m X n pairwise temporal correlations between every voxel in one
ROI (containing m voxels) with every voxel in the second ROI (containing n voxels). The temporal correlation between each pair of voxels reflects the correlation between the activation
time series for the first voxel and the activation time series for the second voxel, over all 23 TRs in each production trial. ¢, Connectivity patterns were used to construct a 2-way logistic
regression classifier to discriminate the currently drawn object (target) from the other trained object (foil). This classifier was trained in a runwise cross-validated manner within the first
two runs (early) and the final two runs (late) of the production phase. D, Target selection, the degree to which the target was prioritized over the foil, was defined as the log-odds ratio

between the target and foil objects.

foil than the baseline control objects. For each ROI within a participant,
we compute the average target selection, target evidence, and foil evi-
dence across time points in all four production runs, then aggregate these
estimates across participants to compute a group-level estimate for each
metric and CI derived via bootstrap resampling of participants 1000
times.

Measuring object evidence in connectivity patterns during production
phase. The above approach to analyzing multivariate neural representa-
tions during production focuses on spatially distributed activation
patterns within individual regions in visual cortex. However, visual pro-
duction inherently entails not only recruitment of individual regions, but
also coordination between them. Practice producing drawings of an ob-
ject may lead to changes in how information is shared between early
sensory regions and downstream visuomotor regions. Such changes may
reflect different ways that information in the visual representation of the
object cue may be selected or transformed to guide action selection dur-
ing drawing production. Because such coordination inherently involves
multiple brain regions, we did not expect that it would be directly avail-
able in activation patterns within any given region. Accordingly, we de-
veloped an approach to explore how object-specific information might
be shared between regions during drawing production. Specifically, be-
cause prior work has indicated that parietal and motor regions are also
recruited during visual production (Vinci-Booher et al., 2019), we mea-
sured how activation patterns in visual cortex are related to activation
patterns in these regions during drawing production.

For each pair of ROIs (e.g., V1 and parietal), we extracted the connec-
tivity pattern from every production trial (Fig. 3). Each connectivity
pattern consists of the m X n pairwise temporal correlations between
every voxel in one ROI (containing m voxels) with every voxel in the
second ROI (containing n voxels). The temporal correlation between
each pair of voxels reflects the correlation between the activation time
series for the first voxel and the activation time series for the second
voxel, over all 23 TRs in each production trial.

For each pair of ROIs, we then trained a 2-way logistic regression
classifier to discriminate the target versus foil objects based on these
connectivity patterns. The classifier was trained in a runwise cross-

validated manner within the first two runs (early) and the final two runs
(late) of the production phase. To capture the degree to which the con-
nectivity pattern was more diagnostic of the target than the foil, we com-
puted target selection, which was averaged over all trials within a phase
(early or late). With this approach, we computed connectivity over time
within a trial, treating the connectivity matrix from each trial as an indi-
vidual observation that was used to train the classifier, then compared the
success of the classifier on other trials from the same half of the produc-
tion phase to determine whether target selection increased from the first
half to the second half.

Data were fit with a linear mixed-effects regression model (Bates et al.,
2015) that included time (early vs late) as a predictor and random inter-
cepts for different participants. We compared this model with a baseline
model that did not include time as a predictor. The reliability of the
increase in target selection across time was measured in two ways: (1)
formal model comparison to evaluate the extent to which including time
as a predictor improved model fit; and (2) the construction of boot-
strapped 95% ClIs for estimates of the effect of time to evaluate whether
they spanned zero (or chance). To further evaluate whether connectivity
patterns carried task-related information that was not redundant with
the activation patterns within regions, we conducted a control analysis,
which involved constructing the same type of classifier on voxel activa-
tion patterns extracted from two ROIs at a time, rather than the pattern
of connectivity between them.

Results

Discriminable object representations in visual cortex

during recognition

Following prior work (Haxby et al., 2001; Norman et al., 2006;
Cichyetal., 2011; Cohen et al., 2017), we hypothesized that there
would be consistent information about the identity of each object
in visual cortex across repeated presentations during the recog-
nition phase. Specifically, we predicted that the stimulus-evoked
pattern of neural activity across voxels in visual cortex upon view-
ing an object could be used to reliably decode its identity. To test
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Figure 4.  Accuracy of object classifier during pre/post recognition phase and drawing pro-

duction phase, for each ventral visual ROI. Error bars indicate 95% Cls.

this prediction, we first extracted neural activation patterns
evoked by each object during recognition separately for each par-
ticipant, in each occipitotemporal ROI. We used neural activa-
tion patterns extracted from a subset of recognition-phase data to
train a 4-way logistic regression classifier that could be used to
evaluate decoding accuracy on held-out recognition data in the
same regions (Fig. 2). We computed a twofold cross-validated
measure of object decoding accuracy (Fig. 4), wherein for each of
the preproduction and postproduction phases, the 40 repetitions
from one of the two runs were used for training the classifier,
whereas the 40 repetitions from the other run were used for
evaluation.

We found that the identity of the currently viewed object
could be reliably decoded in V1, V2, and LOC in the preproduc-
tion recognition phase (95% Cls: V1 = [0.332, 0.370], V2 =
[0.332,0.374], LOC = [0.299, 0.324]; chance = 0.25; Fig. 4), but
not in the more anterior ROIs (95% Cls: FUS = [0.236, 0.266],
PHC = [0.248, 0.280], IT = [0.245, 0.272], ENT = [0.246,
0.268], PRC = [0.237,0.264], HC = [0.241, 0.263]). Likewise, we
found that the same early visual regions, as well as PHC, sup-
ported above-chance decoding during the postproduction phase
(95% CIs: V1 = [0.327, 0.374], V2 = [0.337, 0.379], LOC =
[0.296, 0.329], PHC = [0.255, 0.286]), but not the other regions
(95% ClIs: FUS = [0.244, 0.275], IT = [0.242, 0.268], ENT =
[0.238, 0.268], PRC = [0.227, 0.258], HC = [0.232, 0.259]).
These results suggest that information about object identity was
not uniformly accessible from all regions along the ventral
stream, but primarily in occipital cortex, consistent with previous
work (Grill-Spector et al., 2001; Giiclii and van Gerven, 2015).

Similar object representations in visual cortex during
recognition and production
The results so far show that there is robust object-specific infor-
mation evoked by visual recognition of each object in the patterns
of neural activity in V1, V2, and LOC. Based on prior work (Fan
et al., 2018), we further hypothesized that the neural object rep-
resentation evoked during recognition would be functionally
similar to that recruited during drawing production. Specifically,
we predicted that consistency in the patterns of neural activity
evoked in visual cortex upon viewing an object could be leveraged
to decode the identity of that object during drawing production,
even during the period when the object cue was no longer visible.
To test this prediction, we evaluated how well a linear classifier
trained exclusively on recognition data to decode object identity
could generalize to production data in the same regions.

For each ROI in each participant, we used activation patterns
evoked by each object across 40 repetitions in two initial recog-
nition runs to train a 4-way logistic regression classifier, which we
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then applied to each time point across the four production prac-
tice runs. Critically, we restricted our classifier-based evaluation
of production data to the 23 TRs following the offset of the object
cue in each trial, providing a measure of the degree to which
object-specific information was available in each ROI during
production throughout the period when the object was no longer
visible. Moreover, we ensured that the data used to train this
classifier came from different runs than those used to measure the
expression of object-specific information in these regions during
the preproduction and postproduction recognition phases.
Averaging over all TRs during production, we found reliable de-
coding of object identity in V1 (mean = 0.3; 95% CI = [0.280,
0.320], chance = 0.25; Fig. 4), V2 (mean = 0.305; 95% CI =
[0.281, 0.331]), and LOC (mean = 0.283; 95% CI = [0.267,
0.299]), though not in the more anterior ROIs (95% Cls: FUS =
[0.241, 0.268], PHC = [0.244, 0.275], IT = [0.245,0.261], EC =
[0.241, 0.259], PRC = [0.246, 0.262], HC = [0.241, 0.258];
Fig. 4).

These results suggest that, despite large differences between
the two tasks, that is, visual discrimination of a realistic rendering
versus production of a simple sketch based on object information
in working memory, there are functional similarities between the
visually evoked representation of objects in occipital cortex (i.e.,
V1, V2, LOC) and the representation that is recruited during the
production of drawings of these objects.

Sustained selection of target object during production in
visual cortex

The findings so far show that the identity of the currently drawn
object can be linearly decoded from voxel activation patterns in
occipital cortex during drawing production. While this speaks to
the overall prioritization of the currently drawn target object in
visual cortex, it is unclear whether this prioritization is specific to
the target. On the one hand, it may be that both trained objects
were activated to a similar and heightened degree during the
production phase relative to the control objects because partici-
pants alternated between these objects. On the other hand, this
alternation may have led participants to selectively prioritize the
target object, resulting in the foil object not only being less acti-
vated than the target, but also suppressed relative to the control
objects. To tease these possibilities apart, we quantified the rela-
tive evidence for each object on every time point during drawing
production, in each ventral stream ROI (Fig. 5).

We found sustained target evidence (target > control) across
the production phase in V1 (mean = 0.228; 95% CI = [0.102,
0.361]), V2 (mean = 0.227; 95% CI = [0.094, 0.360]), and LOC
(mean = 0.128; 95% CI = [0.035, 0.231]), consistent with the
classifier accuracy results reported above. We did not find reliable
evidence for sustained target evidence in the other ROIs (95%
Cls: FUS = [—0.025, 0.222], PHC = [—0.067, 0.056], IT =
[—0.163,0.026], EC = [—0.113, 0.020], PRC = [—0.103, 0.018],
HC = [—0.047, 0.062]).

We also found reliable negative foil evidence (foil < control)
across the production phase again in V1 (mean = —0.449; 95%
CI = [—0.601, —0.295]), V2 (mean = —0.481; 95% CI = [—0.701,
—0.261]), and LOC (mean = —0.188; 95% CI = [—0.277,
—0.095]), suggesting that not only is the task-relevant target ob-
ject prioritized in these regions, but also that the presently task-
irrelevant foil object is suppressed. Again, we did not find reliable
evidence for sustained foil evidence (in either direction) in the
other ROIs (95% Cls: FUS = [—0.170, 0.067], PHC = [—0.030,
0.072], IT = [—0.154, 0.06], EC = [—0.119, 0.013], PRC =
[—0.05, 0.056], HC = [—0.064, 0.051]).
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Figure 5.  Classifier evidence for each object over time during production, trained on recognition activation patterns. A, Classifier evidence for target (currently drawn), foil (other trained), and

control (never drawn) objects across repetitions during production phase in V1, V2, LOC, and FUS, averaging over TR within trial. B, Classifier evidence for each object by TR within trial in the same
regions, averaging over trials. Probabilities assigned by a 4-way logistic regression classifier trained on patterns of neural responses evoked during initial recognition of these objects. Shaded regions

represent 95% confidence bands.

Finally, we found sustained target selection (target > foil)
across the production phase again in V1 (mean = 0.676; 95%
CI = [0.449, 0.906]), V2 (mean = 0.708; 95% CI = [0.484,
0.955]), LOC (mean = 0.316; 95% CI = [0.216, 0.423]), and
additionally in FUS (mean = 0.151; 95% CI = [0.074, 0.229]).
Again, we did not find reliable evidence for sustained target se-
lection in the other ventral stream ROIs (95% CIs: PHC =
[—0.081, 0.0262], IT = [—0.098, 0.056], EC = [—0.053, 0.063],
PRC = [—0.112, 0.022], HC = [—0.041, 0.068]).

Opverall, these results show that the currently drawn object was
selectively prioritized in occipital cortex, relative to both never-
drawn control objects and the other trained object, which was
reliably suppressed below the control-object baseline throughout
the production phase.

A related question raised by these findings concerns the degree
to which object decodability during drawing production was
driven by active recruitment of an internal object representation
or by sensory exposure to the finished drawing. Our current data
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provide some support for the contribution of both sources: First,
we observe reliable target evidence and negative foil evidence
both at early time points and throughout each production trial,
especially in regions where target selection is most pronounced
(i.e., V1 and V2). Such sustained selection is suggestive of an
active internal prioritization of the target object, accompanied by
suppression of the foil object (Fig. 5B). Second, we observe a
steady increase in target evidence throughout the period of each
production trial when participants were most actively engaged in
drawing. It is during this period that participants were exposed to
increasing sensory evidence for the target object, provided by the
increasingly recognizable drawing they were producing.
Together, these findings suggest the operation of a selection
mechanism during drawing production that simultaneously
enhances the currently relevant target object representation and
suppresses the currently irrelevant foil object representation in
early visual cortex, potentially involving mechanisms similar to
those supporting selective attention and working memory (Tip-
per et al., 1994; Serences et al., 2009; Gazzaley and Nobre, 2012;
Lewis-Peacock and Postle, 2012; Fan and Turk-Browne, 2013).

Stable object representations in activation patterns in

visual cortex

Because we collected neural responses to each object both before
and after the production phase, we could also evaluate the con-
sequences of repeatedly drawing an object on the discriminability
of neural activation patterns associated with each object in these
regions. Insofar as repeatedly drawing the trained objects led to
more discriminable representations of those objects within each
region, we hypothesized that trained object representations
would become more differentiated following training, resulting
in enhanced object decoding accuracy in the postproduction
phase relative to the preproduction phase, especially for trained
objects. To test this hypothesis, we analyzed changes using a lin-
ear mixed-effects model with phase (pre vs post) and condition
(trained vs control) as predictors of decoding accuracy, with ran-
dom intercepts for each participant. We did not find evidence
that objects differed in discriminability between the preproduc-
tion and postproduction recognition phases in any ROI (i.e., no
main effect of phase; p values > 0.225), nor evidence for larger
changes in discriminability for trained versus control objects (i.e.,
no phase X condition interaction, p values > 0.135). These re-
sults suggest that stimulus-evoked neural activation patterns in
occipital cortex were stable under the current manipulation of
visual production experience.

Enhanced object evidence in connectivity patterns across
occipitotemporal and parietal regions

Drawing is a complex visuomotor behavior, involving the con-
current recruitment of occipitotemporal cortex, as well as down-
stream parietal and motor regions (Vinci-Booher et al., 2019). In
agreement with prior work, we found consistent engagement in
voxels within V1, V2, LOC, parietal cortex, and precentral gyrus
during drawing production relative to rest, as measured by a
univariate contrast (see Materials and Methods). We asked whether
this joint engagement may reflect, at least in part, the transmis-
sion of object-specific information among these regions. If so,
then learning to draw an object across repeated attempts may lead
to enhanced transmission of the diagnostic features of the object.
To explore whether there was enhanced transmission of object-
specific information, we investigated connectivity patterns be-
tween voxels in V1, V2, LOC, parietal cortex, and precentral
gyrus engaged during the production task.
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Specifically, using the entire 23 TR time course of a given trial,
we computed a voxelwise connectivity matrix for each pair of
these ROIs. Each trial’s connectivity matrix was then used as
input to a binary logistic regression classifier, trained with L2
regularization to predict object identity separately in each half of
the production phase. For each test trial, the classifier yielded two
probability values corresponding to the amount of evidence for
the target and foil objects. As in the previous analysis, we com-
puted a target selection log-odds ratio, this time for each test trial
and for each participant in every pair of ROIs. The trials were
then divided based on whether they were early (runs 1 and 2) or
late (runs 3 and 4) in the production phase. We then analyzed
changes in target selection as a function of half using a linear
mixed-effects model with random intercepts for each participant.
This analysis revealed the extent to which patterns of connectivity
between regions during each drawing trial became more diagnos-
tic of object identity over time.

When analyzing changes in connectivity patterns between V1
and V2, we found that including time as a predictor improved
model fit (x?, = 9.078, p = 0.0026, Byme = 0.473, 95% CI =
[0.208, 0.769]). We found a similar pattern of results for V1/LOC
(X2, = 9.301, p = 0.0023, B, = 0.456, 95% CI = [0.166,
0.720]), for V1/parietal (x¢,, = 7.254, p = 0.0071, Byme = 0.409;
95% CI = [0.078, 0.723]), for V2/LOC (x2, = 6.775, p = 0.0092,
Biime = 0.388; 95% CI = [0.073, 0.701]), and modestly for V2/
parietal (x{;) = 4.293, p = 0.038, Byime = 0.304; 95% CI = [0.024,
0.580]). We also analyzed changes in the connectivity pattern for
LOC/parietal but did not find evidence of reliable changes over
time (x?,, = 1.01, p = 0.3151, Byme = 0.141;95% CI = [—0.152,
0.407]). We found similar null results when analyzing changes in
the connectivity pattern between V1 and precentral (i.e., motor
cortex) (x¢) = 1.294, p = 0.255, Byme = 0.156, 95% CI =
[—0.112, 0.413]), V2 and precentral (x,, = 1.541, p = 0.214,
Buime = 0.164, 95% CI = [—0.092, 0.446]), LOC and precentral
(Xt = 0.166, p = 0.683, Byme = 0.055; 95% CI = [—0.253,
0.337]), and parietal and precentral (X%l) = 0.257, p = 0.612,
Buime = 0.069; 95% CI = [—0.201, 0.354]).

Overall, these results suggest that repeated drawing practice
may lead to enhanced transmission of object-specific informa-
tion between regions in occipital and parietal cortex over time
(i.e., from early to late in production phase; Fig. 6).

Enhanced object evidence not found in activation patterns
within regions

The foregoing connectivity analyses were based on voxels from
pairs of ROIs. Thus, it may have been the case that simply com-
bining information about voxel activity from two regions would
have been sufficient to uncover learning effects that were masked
when regions were considered individually. If true, then concat-
enating voxel activation patterns from two ROIs should also
reveal changes in target information over time. To test this pos-
sibility directly, we constructed the same type of classifier on the
concatenated voxel activation patterns extracted from each ROI,
rather than their connectivity patterns.

By contrast with decoding from connectivity patterns, we
found that, when using concatenated activation patterns from V1
and V2, including time as a predictor did not improve model fit
(X{1) = 0.075, p = 0.784), and time did not predict target selec-
tion (Byme = —0.030, 95% CI = [—0.257, 0.181]). There were
similarly null effects for concatenated V1/LOC (x7,, = 0.690, p =
0.406, Byme = 0.092, 95% CI = —0.126, 0.302), V1/parietal (x?,, =
0.203, p = 0.652, Byme = —0.054, 95% CI = [—0.315, 0.180]),
V2/LOC ()i = 0.274, p = 0.601, Byme = 0.059, 95% CI =
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[—0.171, 0.273]), V2/parietal (x?, = 0.301, p = 0.583, Byne =
—0.066, 95% CI = [—0.315, 0.158]), and LOC/parietal (X%n =
0.000, p = 0.988, Byme = —0.002, 95% CI = [—0.246, 0.251]).

Together, these results suggest that connectivity patterns be-
tween regions carry task-related information about the target
object that was not redundant with information directly accessi-
ble from activation patterns within regions. A possibility consis-
tent with these findings is that enhanced target information in
patterns of connectivity between occipitotemporal and parietal
regions may reflect increasing ability to emphasize the diagnostic
features of an object across repeated attempts to transform their
perceptual representation of the object into an effective motor
plan to draw it. This interpretation would be consistent with
prior studies using a similar paradigm that have shown improve-
ment in the recognizability of drawings across repetitions (Fan et
al., 2018; Hawkins et al., 2019). More broadly, our analyses pres-
ent a general approach to quantifying how multivariate patterns
of connectivity between regions change during repeated practice
of complex visually guided actions, including visual production
(Vinci-Booher et al., 2016).

Discussion
The current study investigated the functional relationship be-
tween recognition and production of objects in human visual

cortex. Moreover, we aimed to characterize the consequences of
repeated production on the discriminability of object represen-
tations. To this end, we scanned participants using fMRI while
they performed both recognition and production of the same set
of objects. During the production task, they repeatedly produced
drawings of two objects. During the recognition task, they repeat-
edly discriminated the repeatedly drawn objects, as well as a pair
of other control objects. We measured spatial patterns of voxel
activations in ventral visual stream during drawing production
and found that regions in occipital cortex carried diagnostic in-
formation about the identity of the currently drawn object that
was similar in format to the pattern evoked during visual recog-
nition of a realistic rendering of that object. Moreover, we found
that these production-related activation patterns reflected sus-
tained prioritization of the currently drawn object in visual cortex
and concurrent suppression of the other repeatedly drawn object,
suggesting that visual production recruits an internal representa-
tion of the current object to be drawn that emphasizes its diag-
nostic features. Finally, we found that patterns of functional
connectivity between voxels in occipital cortex and parietal cor-
tex supported progressively better decoding of the currently
drawn object across the production phase, suggesting a potential
neural substrate for production-related learning. Together, these
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findings contribute to our understanding of the neural mecha-
nisms underlying complex behaviors that require the engage-
ment of, and interaction between, regions supporting perception
and action in the brain.

Our findings advance an emerging literature on the neural
correlates of visually cued drawing behavior. The studies that
comprise this literature have used widely varying protocols for
cueing and collecting drawing data. For example, one early study
briefly presented watercolor images of objects as visual cues, and
instructed participants to use their right index finger, which lay
by their side and out of view, to “draw” the object in the air
(Makuuchi et al., 2003). Another study used diagram images of
faces and had participants produce their drawings on a paper-
based drawing pad, also hidden from view (Miall et al., 2009).
More recently, however, MR-compatible digital tablets have en-
abled researchers to automatically capture natural drawing be-
havior in a digital format while participants are concurrently
scanned using fMRI. In one such study, participants copied geo-
metric patterns (i.e., spiral, zigzag, serpentine), which were then
projected onto a separate digital display (Yuan and Brown, 2014),
while another had participants copy line drawings of basic ob-
jects, but participants were unable to view the strokes they had
created (Planton et al., 2017).

Unlike the way people produce drawings in everyday life, par-
ticipants in these studies generally did not receive visual feedback
about the perceptual properties of their drawing while producing
it (compare Yuan and Brown, 2014), and were cued to produce
simple abstract shapes rather than real-world objects. By con-
trast, in the current study, we used photorealistic renderings of
3D objects as visual cues and gave participants continuous visual
access to their drawing while producing it. Using photorealistic
object stimuli rather than geometric patterns or preexisting line
drawings of objects allowed us to interrogate the functional rela-
tionship between the perceptual representations formed during
visual recognition of real-world objects and those that are re-
cruited online to facilitate drawing production. Moreover, par-
ticipants in our study received immediate visual feedback about
the perceptual properties of their drawing while producing it,
allowing us to investigate distinctive aspects of drawing behavior
that are not shared with other depictive actions (e.g., gesture) that
do not leave persistent visible traces.

Previous studies were also primarily concerned with charac-
terizing overall differences in BOLD signal amplitude between a
visually cued drawing and another baseline visual task (i.e., object
naming, subtraction of two visually presented numbers). The
current study diverges from prior work in its use of machine learning
techniques to analyze the expression of object-diagnostic informa-
tion within visual cortex, as well as in the pattern of connections
to downstream parietal regions. As a consequence, our study
helps to elucidate the neural content and circuitry that underlie
visual production behavior.

The current findings are generally consistent with prior work
in observing broad recruitment of a network of regions during
visually guided drawing production, including regions in the
ventral stream and in parietal cortex. Moreover, our findings are
congruent with a growing body of evidence showing a large de-
gree of functional overlap in the network of regions during the
perception and production of abstract symbols (James and Gau-
thier, 2006; James, 2017), as well as overlap between regions
recruited during production of symbols and object drawings
(Planton et al., 2017). This convergence suggests that common
functional principles (Lake et al., 2015), if not identical neural
mechanisms, may underlie fluent perception and production of
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symbols and object drawings, in particular the recruitment of
representations in visual cortex and computations in parietal cor-
tex that are thought to transform perceptual representations into
actions (Vinci-Booher et al., 2019).

Interestingly, the most robust information about which object
participants were currently drawing was available in occipital
cortex. These results are largely consistent with prior work that
has found functional overlap between neural representations of
perceptual information and information in visual working mem-
ory (Harrison and Tong, 2009; Sprague et al., 2014) and visual
imagery (Kosslyn et al., 2001; Dijkstra et al., 2017). Thus, a natu-
ral implication for our understanding of the neural mechanisms
underlying visual production is that mechanisms supporting vi-
sual working memory and visual imagery in sensory cortex are
also recruited during production of a drawing of an object held in
working memory. Further, these mechanisms may have provided
the basis for our ability to decode the identity of the target object
during drawing production.

A potential alternative explanation for above-chance decod-
ing of object identity in occipital cortex could be that participants
made consistent eye movements in response to the object when
presented as a cue in the production runs or as an image in the
recognition runs. However, this explanation seems unlikely for a
few reasons: First, objects were presented briefly and centrally
during recognition runs, reducing the need and time available for
object-specific eye movements. Second, objects were displayed
from a trial-unique viewpoint during both recognition and pro-
duction runs, ensuring variation in the retinal input across re-
peated presentations of the same object and, thus, the patterns of
eye movements made in response. Third, participants were in-
structed to draw the object as it was displayed in the cue during
production runs, which meant that their drawings and associated
eye movements also reflected viewpoint variability.

While the current study was focused on learning-related con-
sequences of visual production practice, other learning studies
that have used different tasks, including categorization training
(Jiang et al., 2007), associative memory retrieval (Favila et al.,
2016), spatial route learning (Chanales et al., 2017), and statistical
learning (Schapiro et al., 2012), have found that repeated engage-
ment with similar items can lead to their differentiation in the
brain. Although we did not find that trained object representa-
tions became more differentiated within our ROIs, we discovered
in exploratory analyses that the pattern of connectivity between
occipital and parietal regions during drawing production carried
increasingly diagnostic information about the target object across
the production phase. Our current findings suggest that, while
activation patterns evoked by objects within subregions of occip-
ital cortex may not differentiate as a result of repeated produc-
tion, the manner in which this information is transmitted
between occipital and parietal regions might. Further investiga-
tion of how perceptual information represented in visual cortex is
transformed into motor commands issued by downstream re-
gions, including motor cortex, is a clear and important direction
for future research (Churchland et al., 2012; Russo et al., 2018). It
is plausible that some visual properties may map selectively onto
specific motor plans such that otherwise similar stimuli may
lead to increasingly different actions as participants learn to
emphasize the visual properties of an object that distinguish it
from other objects in their drawings. We did not find evidence
for such changes in linear transformations between visual and
motor cortex, but future work could examine nonlinear trans-
formations (Anzellotti and Coutanche, 2018) or better ways to
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characterize motor representations and learning (Berlot et al.,
2018).

Together, our findings provide support for the notion that
visual production and recognition recruit functionally similar
representations in human visual cortex, and that learning may
occur during visual production by enhancing the discriminability
of neural representations of repeatedly practiced items (Wang et
al., 2015). In the long run, further application of multivariate
analysis approaches to neural data collected during visual pro-
duction may shed new light not only on the representation of
task-relevant information in sensory cortex, but also how this
information is transmitted to downstream parietal and frontal
regions that support the planning and execution of complex mo-
tor plans (Goodale and Milner, 1992; James, 2017).
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