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We often interact with multiple objects at once, such as when balancing food and beverages on a dining
tray. The success of these interactions relies upon representing not only individual objects, but also
statistical summary features of the group (e.g., center-of-mass). Although previous research has estab-
lished that humans can readily and accurately extract such statistical summary features, how this ability
is acquired and refined through experience currently remains unaddressed. Here we ask if training and
task feedback can improve summary perception. During training, participants practiced estimating the
centroid (i.e., average location) of an array of objects on a touchscreen display. Before and after training,
they completed a transfer test requiring perceptual discrimination of the centroid. Across 4 experiments,
we manipulated the information in task feedback and how participants interacted with the objects during
training. We found that vector error feedback, which conveys error both in terms of distance and
direction, was the only form of feedback that improved perceptual discrimination of the centroid on the
transfer test. Moreover, this form of feedback was effective only when coupled with reaching movements
toward the visual objects. Taken together, these findings suggest that sensory-prediction error—signaling
the mismatch between expected and actual consequences of an action—may play a previously unrec-
ognized role in tuning perceptual representations.

Keywords: ensemble statistics, perceptual learning, feedback, perception and action, sensory-prediction
error

We often encounter objects in groups: fallen leaves on the lawn,
food and beverages on a dining tray, or a stack of papers on our
desk. In such cases, we may have the goal of interacting effectively
with the group of objects: minimizing time raking up the leaves,
keeping the tray balanced while carrying it across the room, or
moving the stack of papers without tipping it over. Achieving these
goals relies upon accurately representing not only the individual
objects that comprise each group, but general properties of the
whole group of objects, such as the area of highest density or its
center-of-mass.

Prior investigations have shown that people are able to quickly
and accurately extract such “statistical summary features” from
groups of objects. For example, naive participants can extract the
mean size of an array of disks of varying sizes (Chong & Treis-
man, 2003, 2005), the mean orientation of peripherally presented
oriented gratings (Parkes et al., 2001), and the mean emotional

expression of a set of faces (Haberman & Whitney, 2007). Good
performance on these summary judgment tasks has been found
even when participants are highly impaired at judging the proper-
ties of an individual object in the set (Ariely, 2008). However,
although these findings show that certain summary features are
readily accessible, the computations underlying summary percep-
tion are not fully understood (Ariely, 2008; Bauer, 2009; Myczek
& Simons, 2008). Moreover, these demonstrations do not explain
how people acquire this ability, nor explore conditions for further
learning.

Examining how learning affects statistical summary perception
may provide crucial insight into how these summary representa-
tions are formed and used to guide behavior. Generally speaking,
such learning may proceed in two ways: (a) in an unsupervised
manner, in which mere exposure to sensory inputs leads to better
discriminability along task-relevant dimensions; or (b) in a super-
vised manner, in which external feedback about the correctness of
discrimination judgments during training improves accuracy in
other contexts. A major goal of the current study was to directly
examine the contribution of feedback to learning in statistical
summary perception (supervised), especially as compared to the
effects of experience alone (unsupervised).

Perceptual learning entails the enhancement of performance on
a perceptual task (e.g., orientation, size, position discrimination)
because of practice. The role of external feedback in perceptual
learning, however, is complex. Although several studies report
little effect of feedback on performance improvements (Ball &
Sekuler, 1987; Karni & Sagi, 1991; Shiu & Pashler, 1992), others
have found that feedback enhances and may even be necessary for
perceptual learning (Herzog & Fahle, 1997; Seitz, Nanez, Hollo-
way, Tsushima, & Watanabe, 2006). One possible reason for this
lack of consensus is that feedback has largely been treated in a

This article was published Online First September 21, 2015.
Judith E. Fan, Nicholas B. Turk-Browne, and Jordan A. Taylor, Depart-

ment of Psychology, Princeton University.
Thanks to Ryan O’Connell for assistance with data collection, and Sam

McDougle and other members of the Intelligent Performance & Adaptation
Lab for helpful feedback during preparation of this article. A subset of
these findings was reported in a talk given at the 21st Annual Meeting on
Object Perception, Attention, and Memory, and was reprinted as part of the
conference proceedings in Visual Cognition (2013). This work was sup-
ported by NSF GRFP DGE-0646086 (JEF), NINDS R01 NS084948 (JAT),
and NIH R01 EY021755 (NBT-B).

Correspondence concerning this article should be addressed to Judith E.
Fan, Peretsman-Scully Hall, Department of Psychology, Princeton Univer-
sity, Princeton, NJ 08540. E-mail: jefan@princeton.edu

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

Journal of Experimental Psychology:
Human Perception and Performance

© 2015 American Psychological Association

2016, Vol. 42, No. 2, 266–280
0096-1523/16/$12.00 http://dx.doi.org/10.1037/xhp0000132

266

mailto:jefan@princeton.edu
http://dx.doi.org/10.1037/xhp0000132


unitary fashion in most studies of perceptual learning. Specifically,
traditional experimental procedures used to examine perceptual
learning have relied on binary judgments, and have thus been
restricted to manipulating feedback in a purely success-based
fashion (see Liu, Dosher, & Lu, 2014 for model and review). By
contrast, there is a long history of examining more graded forms of
feedback in motor learning (Salmoni, Schmidt, & Walter, 1984).

In everyday life, where people not only look at sets of objects,
but also interact with them, sources of feedback other than binary
task success are available. Specifically, while interacting with
objects, we continuously experience sensory feedback arising from
visual and haptic/tactile information. For example, upon lifting an
unevenly loaded tray, we quickly notice if the tray is beginning to
tilt, allowing us to compensate for unexpected forces by adjusting
the position of our grip in a continuous manner. The mismatch
between the expected position of the tray upon lifting it (balanced)
and its actual position (tilted) constitutes a form of sensory-
prediction error, which conveys visual and proprioceptive infor-
mation about the deviation between the expected and actual con-
sequences of an action (Synofzik, Thier, & Linder, 2006).
Sensory-prediction errors have been shown to be crucial for basic
kinds of motor learning (see Shadmehr, Smith, & Krakauer, 2010
for a review). For example, when reaching toward a target loca-
tion, the mismatch between the expected hand position based on
the motor command and actual hand position based on visual
information is sufficient to induce adaptation of subsequent reach-
ing movements to account for earlier errors (Tseng, Diedrichsen,
Krakauer, Shadmehr, & Bastian, 2007). More generally, the
amount and kind of sensory feedback available during training can
directly affect the nature of learning and the extent of generaliza-
tion of motor performance to new contexts (Izawa & Shadmehr,
2011; Nikooyan & Ahmed, 2014; Taylor, Hieber, & Ivry, 2013).
Finally, an active movement appears to be necessary for sensori-
motor adaptation, as passive viewing of errors does not produce
sensory-prediction errors (Held & Freedman, 1963; Held & Got-
tlieb, 1958).

To directly examine the contributions of these different forms of
error feedback (“knowledge of results”) to statistical summary
perception, we developed a reaching task in which participants
made pointing movements toward the centroid (i.e., average loca-
tion) of an array of dots. We hypothesized that providing vector
feedback (i.e., conveying both distance and direction error) after
the pointing movement would generate sensory-prediction errors,
and lead to improved perceptual discrimination of the centroid
after training. Whether other forms of feedback conveying less
spatially precise error information (i.e., scalar feedback conveying
only distance to the centroid) might improve perceptual discrimi-
nation of the centroid was an open question. Before and after
training, we tested changes in discrimination ability using a sep-
arate perceptual test.

Experiment 1 (Centroid Discrimination)

The goal of this experiment was to investigate the influence of
error-related feedback on the fidelity of the perceptual represen-
tation of the centroid of a set of visual objects. We tested this by
manipulating whether participants received vector feedback or
scalar feedback on a trial-by-trial basis while practicing a task
requiring pointing movements toward the centroid. To provide a

baseline measurement of the effects of task practice alone, we also
included a control condition in which participants did not receive
any trial-by-trial feedback.

We hypothesized that vector feedback might lead to faster
improvement during training than the other conditions, so we
planned to examine the time course of performance on the pointing
task. To distinguish between task-related practice effects from
genuine changes in the fidelity of the underlying representation,
we also measured the degree of improvement on a separate per-
ceptual task performed before and after pointing-task training. This
perceptual task was designed to match the pointing task insofar as
it required computing the centroid location, although it required a
different response.

Method

Participants. Forty-five young adults (29 women, age range:
18 to 34 years) were recruited for participation from the research
subject pool at Princeton University or the Princeton, NJ, commu-
nity. In this and all subsequent experiments, each participant
received course credit or $24 for participation and all provided
informed consent to a protocol approved by the Princeton Institu-
tional Review Board (IRB). All participants were right-handed and
reported normal or corrected-to-normal visual acuity.

Apparatus. The experiment was controlled by a computer
running MATLAB (2013a) and Psychtoolbox (http://psychtoolbox
.org). Stimuli were presented on a vertically oriented 58.42-cm
touchscreen display (Acer T232HL LCD) with 60 Hz refresh rate
positioned 43 cm from the participant.

Stimuli and procedure. Stimuli were presented against a dark
gray background on a touchscreen display (49.9° � 40.0°; Figure
1A). In all phases, trials began with the onset of a central fixation
cross, presented for 550–1,000 ms (randomly jittered). The stim-
ulus array comprised eight white dots (diameter � 0.9°) presented
for 200 ms. This number of items was chosen since it exceeds
traditional estimates of the capacity of visual short-term memory
(STM; Luck & Vogel, 1997; Zhang & Luck, 2008), discouraging
explicit encoding and averaging strategies, while still being small
enough that our measures would remain sensitive to errors in
perceptual averaging. The stimulus duration was chosen to match
those used in earlier studies of statistical summary perception (e.g.,
Chong & Treisman, 2003) and be short enough to prevent multiple
eye movements within a trial (Saslow, 1967). Following response,
the display remained blank for 1,500 ms.

Individual dot locations were independently sampled from a
bivariate Gaussian distribution (circularly symmetric; � of mar-
ginal distributions � 11.2°). Specifically, on each trial we first
sampled eight locations from this bivariate Gaussian distribution
centered on the origin. Because the mean of a random sample is
likely to deviate from the true mean of the underlying distribution,
we next applied a rigid spatial shift to all eight locations so that the
sample centroid would exactly coincide with the origin. To gen-
erate the final display, we applied another rigid spatial shift to all
eight locations to move the sample centroid to the predetermined
centroid location for that trial.

The centroid was defined as the average of the position coordi-
nates of all dots. More precisely, the coordinates of the centroid, xc

and yc, was computed as the sum of the product of the individual
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(Vector feedback)

(Vector feedback)

Figure 1. Task and procedure. (A) Eight dots of uniform size presented for 200 ms in random locations on each trial.
During training, participants pointed to the centroid on touchscreen. During the pretest and posttest, participants
discriminated which quadrant contained the centroid. (B) Groups received different trial-by-trial feedback during
training: true centroid location shown after response (Vector), point score reflecting distance to centroid (Scalar), no
feedback (Control), or centroid location shown before responding (Guided). (C) In Experiment 2, dots appeared in
random sizes and locations. (D) During training in Experiment 3, participants typed in the code of the grid cell
containing the centroid, and then were presented with the location of the centroid. (E) Participants in Experiment 4
performed the pointing task during training while receiving vector error feedback; the grid task was used to obtain a
more precise measure of changes in perceptual discrimination. See the online article for the color version of this figure.
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areas and coordinates of each dot, divided by the total number of
all dots on the display:

xc � 1
n� xi yc � 1

n� yi

The experimental protocol consisted of three phases over two
consecutive days: a pretest phase on Day 1, and training and
posttest phases on Day 2. The posttest was administered immedi-
ately after the conclusion of the training phase.

Quadrant task. The pretest and posttest phases consisted of a
four alternative forced-choice (4 AFC) perceptual task (4 blocks,
50 trials/block), which entailed discriminating which of the four
display quadrants (NE, NW, SE, and SW) contained the centroid
and tapping the display anywhere within that quadrant of the
display after stimulus offset with their right finger (Figure 1A).
Response time (RT) was measured as the time elapsed between
stimulus offset and response (see Table 1).

Given the long history of using discrimination judgments to
assay the quality of perceptual representations in visual psycho-
physics (e.g., Herzog & Fahle, 1997; Petrov, Dosher, & Lu, 2005),
we thought such a task might be appropriate. In traditional per-
ceptual learning tasks that entail discriminating perceptual features
that differ along a single dimension (e.g., orientation), binary
judgments are appropriate. Because the location of the centroid
varied along two dimensions (i.e., horizontal and vertical position),
we reasoned that the minimal space of response options would be
four alternatives. Thus, dividing the display into four quadrants
was the most natural way of achieving this.

To make the task more consistently difficult, we constrained
the location of dots to appear close to the quadrant boundaries
(see Figure 2). Specifically, centroid locations in the quadrant
task were distributed following a hyperbolic function: r �

c ⁄ �cos���sin���, where r is the radial distance from the center of
the display, � represents randomly sampled angles, and c is a
scaling factor that controls the overall distance to the nearest
quadrant boundaries. Smaller values of c produce displays with
centroids falling closer to boundaries, thus, making discrimination
more difficult. The rationale for using the hyperbolic function
derives from the spatial layout of the four quadrants on the display.
We assume that the likelihood that the participant will select the
correct quadrant varies according to the angular location of the

centroid. At angular locations near the main diagonals (y � x and
y � �x), the distance between the centroid and each quadrant
boundary is more closely matched. However, as the centroid
approaches angular locations near the vertical (y-axis) or horizon-
tal (x-axis) meridians, its relative distance to the boundary dividing
two adjacent quadrants is much smaller than its relative distance to
the other two quadrants, effectively biasing discrimination toward
a binary choice between the correct and nearest quadrant, rather
than a four-way choice among all quadrants. A hyperbolic function
was chosen to better match discrimination difficulty at all angular
locations (at least relative to a circular function, where radial
distance is constant at all angles). Nevertheless, because centroid
locations were sampled from the same distribution in all condi-
tions, the specific choice of distribution does not bear on the most
critical comparisons in the current study, which are between con-
ditions.

To ensure that the difficulty of trials in the pretest and posttest
phases was equated, we used a separate thresholding procedure on
Day 1 to estimate the value of c that would result in baseline
accuracy of 62.5% on the 4 AFC task (QUEST; Watson & Pelli,
1983). No feedback was given during the thresholding, pretest and
posttest phases. We restricted values of c to fall in a broad range:
[.344 cm, 3.44 cm]. In the rare case that estimated values of c fell
out of this range, we extended the thresholding phase until c
converged on an acceptable value. Estimation of c only served to
calibrate the difficulty of the quadrant task such that participants
achieved �62.5% accuracy on the task (the midpoint between 25%
and 100%). Because the value of c was fixed within-participant,
changes in perceptual discrimination were measured by computing
the percent change in accuracy between the pretest and posttest
phases for each participant.

Pointing task. The training phase consisted of a centroid es-
timation task (12 blocks � 50 trials/block � 600 total trials),
which entailed tapping the display at the estimated location of the
centroid with the right index finger (Figure 1A). Response time
was measured the same way as in the quadrant task (see Table 1).

Centroid locations in this pointing task were sampled from a
uniform distribution over a rectangular region spanning the central

Table 1
Median Response Time (SEM) by Condition and Phase,
in Milliseconds

Pretest Training Posttest

Experiment 1
Vector 1217 (158) 761 (109) 812 (86)
Scalar 1031 (105) 771 (54) 843 (99)
Control 884 (83) 673 (56) 737 (58)

Experiment 2
Vector 923 (113) 755 (71) 837 (87)
Scalar 887 (73) 913 (90) 829 (54)
Guided 698 (50) 741 (56) 709 (85)

Experiment 3
Grid training 880 (84) 1280 (69)a 796 (67)

Experiment 4
Vector 1727 (129)a 852 (70) 1465 (102)a

a Latency to first keystroke in grid task.

Figure 2. Distribution of centroid locations in the quadrant task followed
a hyperbolic function: r � c ⁄ �cos���sin���, where r is the radial distance
from the center of the display, � represents randomly sampled angles, and c is
a scaling factor that controls the overall distance to the nearest quadrant
boundaries. Smaller values of c produce displays with centroids falling closer
to boundaries; thus, making discrimination more difficult.
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25% of the display. Note that the distribution of centroid locations
in the pointing task differs from that used in the quadrant task in
this and all experiments. The type of feedback provided to partic-
ipants was manipulated across separate groups during the training
phase. Participants in the Vector condition (N � 15) received
trial-by-trial error information about the distance and direction of
the actual centroid from their response. This vector error was
provided by marking the participant’s response with a blue cross-
hair and the actual centroid with a green crosshair. Participants in
the Scalar condition (N � 15) received trial-by-trial error infor-
mation proportional to the distance of their response from the
centroid but no direction-error information. Scalar error was re-
turned as a numerical point score (range � 0–10 points), where the
number of points earned followed a Gaussian loss function of
deviation from the centroid (with � � 11.2° ⁄ �8), rounded to the
nearest integer value. Participants in the Control condition (N �
15) did not receive error feedback on a trial-by-trial basis. Regard-
less of condition, all participants received task performance feed-
back at the end of each 50-trial block in the form of a running
cumulative point total and were encouraged to try to earn as many
points as possible. Participants completed eight practice trials
without feedback before the start of the training phase.

Data Analysis. On each trial, error was computed as the
distance between the actual centroid and participant’s response.
Outlier responses with errors exceeding 3 SD of each participant’s
errors were removed before computing aggregate statistics of
performance. Overall performance for each participant was quan-
tified as root-mean-squared error (RMSE). RMSE is a summary
statistic that captures overall deviation between the centroid and
participants’ responses, and reflects both the accuracy (bias) and
precision (variability) of responses. We also report the mean radial
error (average distance between the centroid and response) and the
SD of errors, computed within-participant, to assess potential
dissociations between these two error components.

While the primary goal of this study was to examine the con-
sequences of training with feedback on subsequent perceptual
discrimination of the centroid, we also examined changes in per-
formance over the course of the training phase, reasoning that such
changes might help explain any training effects observed. The time
course of errors was fit with an exponential function (errorabs �
beax) for each participant, where the exponential parameter a
captures the rate of change in performance over the course of
training (where positive values indicate increasing error and neg-
ative values indicate decreasing error). The same exponential
function was also fit to response times during the training phase.

We also examined the presence of any directional biases (e.g.,
consistently pointing above and to the right of the centroid) by
measuring the angular component of the error vector. These angles
were tested for uniformity using the Hodges-Ajne test, a nonpara-
metric test of deviations from uniformity in circular data (Ajne,
1968; Zar, 1999). In the absence of a directional bias, the distri-
bution of these angles should be circularly uniform around the
centroid on average (in the range [�180°, 180°]), where � � 0 was
defined as pure rightward bias, and counterclockwise rotation is
positive).

To derive an empirical estimate of chance performance on this
task, we conducted simulations informed by the actual spatial
distribution of responses participants made in this task (as opposed
to assuming uniform probability of responding at all locations in

the display). For each trial in the pointing task, we simulated
random responding by sampling from the set of responses a given
participant had made, and computed error on the basis of this
random response. This procedure was repeated 1,000 times for
each participant to derive robust estimates of RMSE under com-
pletely random responding. Alternatively, participants, although
not guessing completely at random, may have been able to achieve
above chance-level performance by subsampling the display (e.g.,
pointing to the average location of only 3 or 4 dots, rather than the
full set of 8). This possibility was examined by estimating the
goodness-of-fit (RMSE) of each of the intermediate cases between
random guessing (i.e., 0 of 8 dots) and full averaging of all dots
presented (i.e., 8 of 8 dots) to each participant’s actual response
distribution. Specifically, this was estimated by sampling a random
subset of dots from each trial of a fixed size (e.g., 3 of 8 dots),
recording the distance between the centroid of this random subset
and the participant’s response, and then computing RMSE. This
procedure was performed 1,000 times for each subset size, for each
participant, to derive robust estimates of average deviation be-
tween participant responses and the centroids of these random
subsets.

Although dot locations were sampled from the same underlying
distribution, individual trials varied in how dispersed the dots were
on the display. Trials with high dispersion might be more difficult
(i.e., result in less precise centroid representation) than trials with
low dispersion. To quantify how dot dispersion affected centroid
estimation, we used multiple regression to model the contribution
of horizontal location variability (sx) and vertical location variabil-
ity (sy) to error magnitude across trials in the pointing task for each
participant (error � sxi

T �sx 	 syi
T �sy 	 εi).

Results

Pretest. Pretest performance on the quadrant task in all groups
was significantly better than chance (59.0% correct vs. 25%;
t(44) � 25.6 p 

 .001, d � 3.81), and did not differ among
groups (F(2, 42) � 1.76, p � .184, �2 � .078). Estimates of c,
which controlled quadrant task difficulty (see Method), also did
not differ between groups at baseline (Vector: .958 cm [SEM �
.123 cm], Scalar: 1.01 cm [SEM � .097 cm], Control: 1.21 cm
[SEM � .194 cm]; F(2, 42) � .814, p � .450, �2 � .0373), nor did
median response time (F(2, 42) � 1.46, p � .244, �2 � .065).

Training.
Overall. Participants received different kinds of information

following a response in the pointing task during the training phase
(Figure 1B). Performance in all groups highly exceeded that ex-
pected by chance (p 

 .001), verifying that participants were
engaged with the task (Figure 3A). Overall performance (RMSE)
during the training phase did not reliably differ among groups
(F(2, 42) � 1.76, p � .184, �2 � .078; Vector RMSE: 1.35 cm;
Scalar RMSE: 1.41 cm; Control RMSE: 1.54 cm). Radial error
(i.e., reflecting the accuracy component of performance) also did
not differ among conditions (Vector: 1.19 cm, Scalar: 1.24 cm,
Control: 1.35 cm; F(2, 42) � 1.61, p � .212, �2 � .071; Figure
3B); nor did error variability (i.e., reflecting the precision compo-
nent of performance; Vector: .636 cm, Scalar: .678 cm, Control:
.748 cm; F(2, 42) � 2.17, p � .127, �2 � .094).

Time course. We thought it reasonable to expect participants
to show steady improvement over the course of training, where the
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rate of improvement would be highest for the groups receiving
either Vector or Scalar feedback. Surprisingly, these time series
were generally flat (i.e., nonsignificant exponential learning rate)
over the training period tested in all three groups (Vector: t(14) �
.996, p � .336; d � .257; Scalar: t(14) � .905, p � .381, d � .233;
Control: t(14) � .676, p � .510, d � .175), suggesting that
participants may have been performing close to ceiling. Although
response accuracy did not improve over time, response times did
significantly decrease over the course of training in all three
conditions (Vector: t(14) � 2.27, p � .040; d � .585; Scalar:
t(14) � 4.52, p 
 .001; d � 1.17; Control: t(14) � 4.92, p 
 .001;
d � 1.27). Neither the rate of decrease in RTs (F(2, 42) � 1.12,
p � .335, �2 � .051) nor overall RTs (F(2, 42) � .488, p � .617,
�2 � .023) differed between conditions, suggesting that this tem-
poral trend in RT more likely reflects generic task practice effects,
rather than the consequences of differences between feedback
conditions.

Directional bias. Despite the lack of overall RMSE effects
during training, there may have been differences in directional
biases between conditions. Using the Hodges-Ajne test for non-
uniformity in the angular component of errors, we found signifi-
cant evidence for directional bias Control participants (p � .012;
95% confidence interval [CI] [�23.9°, �90.0°]). There was a
trend toward deviation from uniformity in the Scalar group (p �
.071; 95% CI [5.1°, �77.6°]), and no reliable nonuniformity in
Vector participants (p � .250; 95% CI [�22.9°, 109.6°]). Never-
theless, 95% CIs for the direction of bias overlapped heavily in the
quadrant lying southeast of the centroid for all groups. These
results are consistent with the possibility that there may be a

southeast bias in the pointing task, which was reduced for partic-
ipants in the Vector condition who received spatially precise
directional error information on every trial.

Relationship to stimulus variability. While the locations of
dots were drawn from the same distribution, their exact locations
varied from trial-to-trial. We reasoned that trials with higher vari-
ability in dot location would be more difficult, and thus be asso-
ciated with larger errors on average. To test this possibility, we
used multiple regression to model the contribution of variability in
horizontal and vertical locations to error magnitude across trials
for each participant. Across all conditions, we found that both
horizontal-location variability and vertical-location variability
were highly predictive of error magnitude (Vector: �sx � .056:
t(14) � 8.48, p 
 .001; �sy � .028: t(14) � 3.19, p � .007; Scalar:
�sx � .083: t(14) � 6.57, p 
 001; �sy � .068: t(14) � 6.66, p 

.001; Control: �sx � .084: t(14) � 7.27, p 
 .001; �sy � .076:
t(14) � 7.75, p 
 .001). To examine potential differences between
conditions because of feedback, we submitted these linear coeffi-
cients to a 2 axis (horizontal, vertical) � 3-condition (Vector,
Scalar, Control) analysis of variance (ANOVA). We found that the
degree of dependence between variability and error was lower for
Vector participants than for Scalar or Control participants (main
effect of condition: F(2, 84) � 8.45, p 
 .001, �2 � .167),
suggesting that vector error feedback may serve to reduce noise in
centroid estimation for more difficult trials.

Posttest. Despite showing similar performance during train-
ing, posttest phase performance in the quadrant task revealed the
consequences of training: perceptual discrimination was reliably
enhanced in the Vector group (% change: 12.6; t(14) � 3.05, p �
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Figure 3. Experiment 1 results. (A) Overall performance (root mean square error [RMSE]) on the pointing task
during the training phase as a function of trial number for the Vector (Salmon), Scalar (Blue), and Control (Gray)
groups. All groups performed better than chance (dashed line). (B) Performance in the pointing task broken down
into accuracy (radial error) and precision (SD). (C) Percent change in accuracy between posttest and pretest in
the quadrant task. Error bars represent 1 SEM �
.05, �
.1. See the online article for the color version of this
figure.
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.0087, d � .787; Figure 3C), but not in either of the Scalar (%
change: 3.17; t(14) � .058, p � .954, d � .015), or Control groups
(% change: �.002; t(14) � .058, p � .954, d � .015). The degree
of enhancement was greater for Vector participants than for Con-
trol participants (t(28) � .027, p � .027, d � .853, uncorrected)
and Scalar and Control did not differ from one another (t(28) �
.639, p � .528, d � .233). The difference in improvement did not
reach significance for Vector versus Scalar groups, however
t(28) � 1.66, p � .108, d � .607. Taken together, these findings
suggest that vector error feedback tuned centroid representations in
a more general manner, promoting transfer to a separate perceptual
task.

For completeness, we additionally performed a 2 phase (pretest,
posttest) � 3 condition (Vector, Scalar, Control) ANOVA on RTs,
which yielded no significant interaction between phase and con-
dition (F(2, 82) � .556, p � .576, �2 � .013), although there was
a main effect of condition (F(2, 82) � 6.14, p � .003, �2 � .130)
and marginally significant effect of phase (F(1, 82) � 3.84, p �
.053, �2 � .045). Follow-up analyses of posttest RTs showed that
median response times were lower in the posttest than pretest for
all conditions (ps 
 .039) and critically, in the Vector condition (t
(14) � 3.06, p � .008, d � .791), arguing against the possibility
that a speed–accuracy trade-off explained the improvement in
accuracy for Vector participants. The rate of decrease in RTs
(exponential term in model fit) during the training phase did not
correlate with the degree of accuracy improvement for Vector
participants (r � �.119, p � .673).

Experiment 2 (Center-of-Mass Discrimination)

In Experiment 1, we found that participants who received Vec-
tor feedback during training showed better perceptual discrimina-
tion of the centroid in the posttest, although this was not accom-
panied by significant performance changes during training. On the
other hand, we observed no learning in either of the Scalar and
Control conditions. The current experiment sought to expand these
findings in two additional ways.

First, to explore the possibility that the lack of improvement during
training might reflect ceiling performance in this task, we sought to
make the task more difficult. Having found that greater dot location
variability was associated with larger errors in Experiment 1, we
reasoned that increasing the amount stimulus variability in the display
might make the task more difficult, providing a broader dynamic
range in which to observe performance changes during the pointing
task. We accomplished this by varying the size as well as location of
dots, and eliciting estimates of the center-of-mass of the array, where
the area of each dot was taken into account.

Second, we sought to test the importance of error feedback, per
se, to learning. To accomplish this, we included a Guided condi-
tion in which participants were passively guided to the correct
location of the center-of-mass immediately after array offset. Thus,
this condition was identical to the Vector condition except that
pointing response error was virtually eliminated by the onset of the
response cue.

Method

Participants. Sixty young adults (40 women, age range: 18 to
34 years) participated.

Stimuli and procedure. On each trial, participants were pre-
sented with an array of eight dots that varied in both size1 and
location (Figure 1C). The diameter of individual dots was deter-
mined by sampling from a Gaussian distribution centered on the
base diameter used in Experiment 1 (0.9°) with � � 0.3° (only dots
with positively valued diameter were used). Participants were
instructed to aim for the center-of-mass of the array, taking into
account the area of the dots, and treating the dots as flat (as
opposed to having volume). The center-of-mass was defined as the
average of the position coordinates of all dots, weighted by their
surface area. The coordinates of the center-of-mass, xc and yc,
were computed as the sum of the product of the individual areas
and coordinates of each dot, divided by the total area of all dots on
the display:

xc �
� mixi

� mi
yc �

� miyi

� mi

This experiment included Vector and Scalar conditions (N � 20
each) that were identical to those in Experiment 1. We did not
recruit a separate Control group because the Scalar condition
provides a tighter control for the Vector condition than the Control
condition (that did not provide trial-by-trial feedback at all), and
the two conditions did not differ in Experiment 1.

Another goal of this study was to isolate the contribution of
error information in feedback, per se. To accomplish this, we
included a Guided condition (N � 20), identical to the Vector
condition except that the actual center-of-mass location was re-
vealed 100 ms after stimulus offset but before response. Guided
participants were still instructed to point to the location of the
center-of-mass on each trial, but it was marked with a green
crosshair until they made their response. If pairing each dot array
with its center-of-mass is sufficient to result in enhanced percep-
tual discrimination, then Guided participants should show positive
transfer to the quadrant task. On the other hand, if response error
is necessary to produce transfer, then Guided participants should
not show positive transfer to the quadrant task.

Data analysis. Response data were submitted to the same set
of analyses as in Experiment 1. To quantify how much stimulus
variability affected center-of-mass estimation in the pointing task
during the training phase, we used multiple regression to model the
contribution of horizontal-location variability (sx), vertical-
location variability (sy), and variability in dot size (i.e., area, sarea)
to error magnitude across trials for each participant (error �
sxi

T �sx 	 syi
T �sy 	 sarea_i

T �sarea 	 εi).

Results

Pretest. Pretest performance on the quadrant task in all groups
was significantly better than chance (60.2% correct vs. 25%;
t(59) � 32.3, p 

 .001, d � 4.17), and did not differ among
groups (F(2, 57) � .998, p � .375, �2 � .034). Estimates of c also

1 In pioneering studies of statistical summary representation by Chong
and Treisman (2003), size was operationalized as the diameter (of circular
disks). They found that psychological estimates of the mean size of two
disks systematically fall between the arithmetic mean of the diameter and
the arithmetic mean of the surface area of the two disks. Prior work has also
demonstrated that observers are sensitive to variability in stimulus size
(e.g., Solomon, Morgan, & Chubb, 2011).
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did not differ between groups (Vector: 1.10 cm [SEM � .070 cm],
Scalar: 1.11 cm [SEM � .041 cm]; Guided: 1.20 cm [SEM � .094
cm]; F(2, 57) � .441, p � .645, �2 � .015), nor did median
response time (F(2, 57) � 2.14, p � .127, �2 � .070).

Training.
Overall. During training, participants received either Vector

or Scalar error feedback following their response on each trial, or
were shown the location of the center-of-mass before making their
response (Guided). As Guided participants had direct access to the
location of the center-of-mass while pointing to the display, their
responses provide an approximation of noise when perceptual
uncertainty about the centroid location is minimized. Overall,
Guided participants made substantially smaller pointing errors
than Vector and Scalar participants (ts � 15.4, p 

 .001, d �
4.88; Vector RMSE: 1.94 cm; Scalar RMSE: 1.91 cm; Guided
RMSE: .358 cm). Consistent with Experiment 1, neither overall
training phase performance (RMSE; t(38) � .285, p � .777, d �
.090; Figure 4A), radial error (Vector: 1.70 cm; Scalar: 1.67 cm;
Guided: .304 cm; ts
1) nor error variability (Vector: .935 cm;
Scalar: .928 cm; Guided: .187 cm; ts
1; Figure 4B) differed
between Vector and Scalar conditions.

Time course. Our overall manipulation of task difficulty was
successful (Experiment 2: Vector/Scalar pooled RMSE � 1.93 cm
vs. Experiment 1: Vector/Scalar/Control pooled RMSE � 1.43
cm; t(83) � 7.23, p 
 .001, d � 1.57). However, there were no
significant performance changes (i.e., nonzero exponential learn-
ing rate) over the course of the training phase in either the Scalar
(t(19) � 1.32, p � .203, d � .295) or Guided conditions (t(19) �

.770, p � .451, d � .172); performance actually tended to get
worse in the Vector condition (t(19) � 2.40, p � .027 d � .538),
perhaps because of fatigue. This shows that increasing stimulus
variability was not sufficient to bring about performance changes
over the course of the pointing task.

Response times significantly decreased over the course of train-
ing in the Vector (t(19) � 3.77, p � .001, d � .843) and Scalar
conditions (t(19) � 4.95, p 
 .001; d � 1.11), though there was no
significant trend in the Guided condition (t(19) � .785, p � .442,
d � .175). This suggests that some component of response plan-
ning may generally speed up with additional task practice, but
participants likely reached the minimum response time in the
Guided condition.

Relationship to stimulus variability. We found that horizontal-
location variability, vertical-location variability, and dot area reli-
ably predicted error magnitude for Vector (�sx � .118: t(19) �
11.0, p 
 .001; �sy � .150: t(19) � 16.2, p 
 .001 �ssize � .754;
t(19) � 3.96, p � .001) and Scalar (�sx � .112: t(19) � 14.3, p 

.001; �sy � .145: t(19) � 16.1, p 
 .001 �ssize � .719; t(19) �
3.44, p � .003) participants, but not Guided (ts 
 1) participants.
To compare the degree to which these factors predicted error
magnitude between conditions, we performed a 2 condition (Vec-
tor, Scalar) � 3 predictor (horizontal location, vertical location,
size) ANOVA, which did not reveal a main effect of condition
(F(1, 114) � .028, p � .869, �2 � .0002). This suggests that
returning vector error feedback does not necessarily reduce the
influence of stimulus variability on error.
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Figure 4. Experiment 2 results. (A) Overall performance (root meant square error [RMSE]) on the pointing
task as a function of trial number for the Vector (Salmon), Scalar (Blue), and Guided (Purple) groups. All groups
performed better than chance (dashed line), with Guided participants making substantially smaller errors. (B)
Performance in the pointing task broken down into accuracy (radial error) and precision (SD). (C) Percent change
in accuracy between posttest and pretest in the quadrant task. Error bars represent 1 SEM �
.05, �
.1. See the
online article for the color version of this figure.
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Directional bias. Using the Hodges-Ajne test of uniformity in
the angular component of errors, we found that neither Vector (p �
.11) nor Scalar groups (p � .59) showed systematic evidence of
directional bias.

Posttest. Posttest phase performance was again reliably en-
hanced in the Vector group (% change: .071; t(19) � 2.63, p �
.017, d � .588; Figure 4C), but in the Scalar group (% change:
�.007; t(19) � .257, p � .800, d � .058) nor the Guided group (%
change: �.008; t(14) � .413, p � .685, d � .092). The degree of
enhancement for Vector participants was marginally greater than
for Scalar participants (t(38) � 2.09, p � .044, d � .660) and for
Guided participants (t(38) � 2.38, p � .023, d � .752), and Scalar
and Guided performance did not differ from one another (t(38) �
.045, p � .965, d � .014). Median response time did not differ
between groups (F(2, 57) � .873, p � .423, �2 � .030). These
results provide additional evidence that displaying the location of
the center-of-mass as vector error feedback during training—
beyond merely pairing this location with the dot array or returning
scalar error feedback—is necessary to observe positive transfer to
another task.

We additionally performed a 2 phase (pretest, posttest) � 3 con-
dition (Vector, Scalar, Guided) ANOVA on RTs, which yielded no
significant interaction between phase and condition (F(2, 112) �
.333, p � .717, �2 � .006), and no main effects of either condition
(F(2, 112) � 1.96, p � .145, �2 � 0034) or phase (F(1, 112) � .416,
p � .520, �2 � .004). Median response times were numerically
(though not significantly) lower in the posttest than pretest in the
Vector condition (t(19) � 1.19, p � .249, d � .266), inconsistent with
a speed–accuracy trade-off. The rate of decrease in RTs during the
training phase did not significantly correlate with the degree of accu-
racy improvement for Vector participants (r � �.305, p � .191).

Experiment 3 (Role of Pointing Movements in Learning)

Experiments 1 and 2 manipulated access to vector error infor-
mation by returning spatially precise information about the loca-
tion of the centroid with respect to the location of the participant’s
response, registered at the point of contact between the partici-
pant’s fingertip and the display. Although prior studies of statis-
tical summary perception have not involved action toward the
summary features, prior work in the field of motor learning sug-
gests that such actions are required to generate sensory-prediction
error (for a review, see Shadmehr, Smith, & Krakauer, 2010).
Experiment 3 sought to test whether sensory (i.e., haptic and
visual) feedback of this kind may have contributed to the learning
observed in the first two experiments. Toward this end, we de-
signed a task that elicited perceptual estimates of the centroid
during training without a pointing movement toward the display.
Instead, participants typed the spatial coordinates of the centroid
according to its position in a grid overlaying the display (grid task).

Participants

Twenty young adults (11 women, age range: 18 to 34 years)
participated in Experiment 3.

Stimuli and Procedure

The presentation of the dot array was identical to that used in
Experiment 1. During the training phase, the entire display was

overlaid by a rectangular grid whose cells measured 1.2° � 1.2°,
about the size of a fingertip, to approximate the precision of
responses afforded by the pointing task. Cells lying within the
central 25 � 25-cell region (30.2° � 30.2°) were labeled with an
arbitrary two-character alphanumeric code that varied from trial-
to-trial (Figure 1D). Dot stimuli were of equal size and sampled in
an identical manner to that used in Experiment 1. Participants
identified the grid cell containing the centroid and typed in the
corresponding code. Response entry caused the selected cell to
become highlighted with a white border. Error feedback was
returned by marking the true location of the centroid with a green
crosshair. The grid was visible throughout the entire trial, whereas
the two-character codes were only visible during response.

A continuous measure of error was derived by computing the
distance between the center of the selected cell and the true
centroid on each trial, allowing us to submit these data to the same
set of analyses used in Experiments 1 and 2. This metric provides
an unbiased measure of response accuracy because the centroid
was distributed uniformly across trials, but may result in slight
underestimation of response precision owing to additional mea-
surement error. Performance greatly exceeded that expected by
chance (p 

 .001) or by only averaging a subsample of items on
the display (p 

 .001), verifying that participants could perform
the task.

Before beginning the training phase, participants completed
eight practice grid-task trials where only one target dot appeared
on each trial and the goal was to select the cell corresponding to
this dot’s location. The pretest and posttest phase structure was
identical to that used in the first two experiments.

Results

Pretest. The pretest and posttest phases were identically struc-
tured to those in the first two experiments. Pretest performance on
the quadrant task was significantly better than chance (60.9%
correct vs. 25%; t(19) � 18.0, p 

 .001, d � 4.02), and the value
of c (M � 1.04 cm, SEM � .079 cm) did not differ from that of
participants in Experiment 1 (t(63) � .113; p � .911; d � .03).

Training. Overall performance (RMSE � 1.71 cm; mean
radial error � 1.47 cm; error SD � .862 cm; Figure 5A) greatly
exceeded chance (p 

 .001). Moreover, although the grid task
differed from the pointing task both in the presence of gridlines on
the display and the type of response, performance was comparable
to that on the pointing task in Experiment 1 (Vector RMSE � 1.35
cm) and Experiment 2 (Vector RMSE � 1.94 cm). This shows that
these changes to the display and response modality did not greatly
impact participants’ ability to estimate the centroid location. Using
the same Hodges-Ajne test of angular uniformity as in the previous
experiments, we found no evidence of directional bias (p � .591).
As in the previous experiments, there was also no evidence of
improvement over the course of training (t(19) � .275, p � .787,
d � .061).

One potential concern is that if the grid cells were too large,
participants might not have treated trials on which they selected
the correct grid cell as errors, even though their estimate of the
centroid and the true centroid differed. However, the proportion of
trials on which the correct grid cell was selected was only 11.1%
(SEM � .63%), showing that the grid cells were small enough for
participants to make errors on most trials.
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Posttest. If visual comparison (i.e., absent proprioceptive feed-
back) between the location of the selected grid cell and the precise
centroid location provides a sufficiently strong error signal, then
training on the grid task should also result in positive transfer to the
quadrant task. However, posttest performance did not reliably differ
from pretest performance for participants who trained on the grid task
(% change: 2.69; t(19) � 1.24, p � .231, d � .277; Figure 5C). These
results are consistent with the possibility that sensory-prediction error
— conveying information about the mismatch between the expected
centroid location (where response movement was aimed) and the
actual centroid location (green crosshair)—may play a crucial role in
tuning the perceptual representation of the centroid.

Experiment 4 (Change in the Fidelity of
Representation)

In what ways can training alter centroid representations?
Improvements on the quadrant task in the Vector group (Ex-
periments 1 and 2) showed that some change in the perceptual
representation occurred, but this was based on a relatively
coarse measure — proportion correct in a categorical judgment
task. Experiment 4 sought to better quantify changes in the
accuracy and precision of the perceptual representation of the
centroid. To accomplish this, we used the grid task (from
Experiment 3) to collect continuous reports of the centroid
location in the pretest and posttest, allowing us to directly
measure the quality of the perceptual representation of the
centroid before and after training on the pointing task.

Method

Participants. Twenty young adults (14 women, age range: 18
to 34 years) participated in Experiment 4.

Stimuli and procedure. Dot stimuli were identical to those
used in Experiments 1 and 3. Participants performed the pointing

task with vector error feedback during training, and the grid task
without feedback during the pretest and posttest phases (Figure
1E).

Results

Pretest. Pretest performance on the grid task (RMSE � 1.92
cm) greatly exceeded chance (p 

 .001; Figure 6A) and did
not differ from that of participants during the training phase
(RMSE � 1.71 cm) in Experiment 3 (t(38) � 1.38; p � .176; d �
.436).

Training. Overall pointing task performance (RMSE � 1.37
cm) during the training phase did not differ from that of the Vector
group in Experiment 1 (RMSE � 1.43 cm; t(33) � .156; p � .877;
d � .053). Radial error (1.20 cm) and error variability (.659 cm)
also did not differ (ts
1). However, participant’s pointing errors
significantly deviated from angular uniformity (p � .03; 95% CI
[�56.6°, 15.5°]), consistent with an overall bias below and to the
right of the centroid. There was no evidence of performance
changes (i.e., nonzero learning rate) over the course of the training
phase (t(19) � 1.52, p � .146, d � .339).

Posttest. Consistent with the findings in Experiments 1 and 2,
training on the pointing task with vector error feedback resulted in
generalization to a different task requiring fine perceptual discrim-
ination of the centroid, as quantified by the reduction in RMSE on
the grid task in the posttest (t(19) � 2.93; p � .009; d � .654;
Figure 6C and 6D). This change in overall grid task performance
reflected both decreases in average radial error (t(19) � 2.37; p �
.029; d � .530), as well as in the variability of errors (t(19) � 2.80;
p � .011; d � .626).

Discussion

In the present study, we sought to understand the role of learning
in the formation of statistical summary representations. Specifi-
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cally, we examined how error-related feedback altered the fidelity
of the perceptual representation of the centroid of a set of visual
objects. We found converging evidence across four experiments
that providing vector error feedback while participants practiced
making pointing movements toward the centroid improved the
fidelity of their perceptual representation of the centroid, as mea-
sured by a separate perceptual test conducted before and after
training (quadrant task accuracy in Experiments 1 and 2; grid task
RMSE in Experiment 4). By contrast, participants receiving no
trial-by-trial feedback (Control condition in Experiment 1) or only
scalar feedback (Scalar condition in Experiments 1 and 2) did not
show transfer to the separate perceptual test, suggesting that spa-
tially precise error feedback was necessary to improve the fidelity
of centroid representations. Critically, feedback had to be in the
form of a vector error; participants who were passively guided
toward the correct centroid location did not show transfer despite

having precise centroid information (Guided condition in Experi-
ment 2). Moreover, this form of feedback was effective only when
coupled with reaching movements toward the visual objects; train-
ing on a centroid estimation task that did not involve a pointing
movement did not result in learning (Experiment 3). To quantify
changes in the perceptual representation, we measured the quality
of the perceptual representation before and after training using a
continuous measure (Experiment 4) and found that training with
vector error feedback enhanced both the accuracy (i.e., reduced
bias) and precision (i.e., reduced variability) of centroid estimates.
As a whole, these findings suggest that sensory-prediction error—
signaling the mismatch between expected and actual consequences
of an action—may play a previously unrecognized role in tuning
perceptual representations.

Role of feedback in learning. What might underlie the spe-
cific advantage for training with vector error feedback? In the
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Vector condition, the true spatial location of the centroid was
precisely marked immediately following a pointing response to the
estimated centroid location. When these two points do not coin-
cide, the result is a sensory-prediction error defined as the differ-
ence between the pointing movement and the spatial position of
the true centroid.

On the other hand, in the Scalar condition, numerical feedback
was presented that reflected the accuracy of the estimate, but the
direction of displacement between the participant’s estimate and
the true centroid location was not provided. When the expected
point score and the actual score earned do not coincide, this type
of feedback produces reward-prediction error, reflecting a quanti-
tative difference not tied to a particular sensory modality. Al-
though this type of reward-based feedback has been shown to exert
an important influence on learning and decision-making
(O’Doherty, 2004; Rescorla & Wagner, 1972; Schultz, Dayan, &
Montague, 1997), the role of reward-prediction error in sensori-
motor adaptation is less certain (Izawa & Shadmehr, 2011; Nik-
ooyan & Ahmed, 2014).

In the Guided condition, participants were not given the oppor-
tunity to actively predict the location of centroid and thus did not
experience sensory-prediction error during training. Consistent
with the notion that sensory-prediction error may be necessary to
induce perceptual learning, Guided participants, despite being pro-
vided with exactly the same visual information as Vector partici-
pants, did not improve on the perceptual task.

An alternative explanation is that Guided participants may have
ignored the array, because the task did not demand them to
compute its centroid. However, previous investigations of statisti-
cal summary perception have shown that observers are able to
extract summary features even at short presentation durations
(�50 ms, Chong & Treisman, 2003), leading to the general belief
that such features are automatically computed in a preattentive
manner. If true, participants would not be able to simply disregard
this statistical information upon being shown the array (without
exerting cognitive control to actively ignore the instructions).
Future experiments could directly examine this possibility by
including catch trials designed to test whether participants were
ignoring the array.

Taken together, our findings suggest that the pointing response
itself may have been critical for learning, as such visually guided
movements provide rich and spatially precise sensory feedback
about the position of the fingertip with respect to the centroid
target. In the Grid training condition, both haptic feedback about
finger position, as well as visual feedback about the location of the
response, was less precise than in the Vector condition. Owing to
this lack of precise sensory feedback during response, these par-
ticipants only had access to a crude visual error signal, even though
the true location of the centroid was marked on every trial. These
findings are consistent with prior studies of motor adaptation that
show that sensory feedback is weighted more heavily when this
information is precise (Izawa & Shadmehr, 2011; Körding &
Wolpert, 2004).

One intriguing and counterintuitive aspect of these results is that
perceptual performance in the quadrant and grid tasks was en-
hanced in the Vector condition even though pointing task perfor-
mance did not significantly improve over the course of the training
phase. There are multiple possible reasons for this, though at
present we can only offer speculative accounts that could be

directly tested in future studies. One straightforward possibility is
that a single training phase was insufficient to see significant
improvements in response accuracy because such improvement
depends on a slow form of visuomotor learning that may be stable
within-session but improves over multiple sessions (Karni & Sagi,
1993).

A second possibility is that additional engagement of the motor
system in the pointing task versus the grid task may have been
required for generalization. Although we have emphasized the
informational content carried in error feedback, classic neuropsy-
chological findings (Goodale & Milner, 1992; Mishkin, Unger-
leider, & Macko, 1983) support a distinction between an action-
oriented representation formed along the dorsal visual stream and
a more object-based representation along the ventral visual stream.
Consistent with this account, it is possible that the ‘dorsal repre-
sentation’ supplemented the ‘ventral representation’ of the cen-
troid during visually guided reaching to the centroid in the pointing
task, yielding high pointing accuracy. Moreover, in the Vector
condition, pointing movements in conjunction with precise spatial
feedback about the centroid location generated sensory-prediction
errors, which may have served to further tune the ventral repre-
sentation, the benefits of which were only revealed in the percep-
tual test after training.

We also note that while the lack of online improvement during
training is puzzling, it was also observed in a prior study (Bauer,
2009) that examined the time course of performance in a task
requiring estimation of a statistical summary feature (i.e., mean
length of a set of lines) when participants received different kinds
of feedback. In that study, some participants were told their re-
sponse was correct when it was close to the arithmetic mean, while
others received feedback based on the quadratic or harmonic
means, other mathematically valid ways to compute an average.
Participants in the harmonic mean and quadratic mean conditions
initially made large errors, which decreased over time. By contrast,
participants in the arithmetic mean condition made smaller errors
throughout, and did not significantly improve with additional
practice. These results suggest that participants default to the
arithmetic mean, although binary feedback can nudge them to bias
their responses toward a different mean.

We use this prior work to support the idea that learning in the
Vector condition more likely reflects fine tuning of the centroid
representation, rather than coarse calibration to task demands. In
the latter case, reduced error would not reflect enhancement in the
underlying perceptual representation, but rather participants’ de-
ciding which feature dimensions mattered for task performance. In
our study, calibration to the centroid estimation task may have
even been accomplished in the first few practice trials before the
start of training. Nevertheless, vector error feedback may be re-
quired for this training to further tune the underlying representa-
tion.

Given that participants did not improve over the course of 600
trials of training, an open question concerns the amount of training
required to give rise to the kind of learning we observed. For
example, it is possible that fewer trials may have been sufficient to
induce some amount of generalization. On the other hand, if
learning driven by sensory-prediction errors proceeds in a more
incremental fashion, then a relatively long training session (as long
or longer than that used in this study) may be necessary. Future
investigations that characterize the “dose-response” curve relating
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the amount of training and degree of learning would help to further
illuminate the underlying components of error-driven learning in
statistical summary perception.

Learning mechanisms. What learning mechanisms might ex-
plain how sensory-prediction errors tune the perceptual represen-
tation of the centroid? One possibility is that the representation of
the individual items in the array is enhanced by directly altering
the tuning properties of units residing in early visual areas (Fahle,
Edelman, & Poggio, 1995; Gilbert, Sigman, & Crist, 2001; Karni
& Sagi, 1991). Changes in the representation at that level would be
predicted to result in highly specific improvement at trained loca-
tions, but be unlikely to result in generalization to novel locations
(e.g., items in the left hemifield, if trained on the right). However,
because such early changes alter the fidelity of the inputs to the
rest of the system, this training might be predicted to transfer to
other tasks involving precise representations of spatial position at
these locations (e.g., local change detection). In the present study,
we are unable to directly test this possibility, as the locations of
individual items varied widely from trial to trial. Nevertheless,
testing the spatial specificity of learning in statistical summary
perception merits closer examination in future research.

Another possibility is that sensory-prediction errors lead to
adjustment of the pattern of weights applied to the output from
units in early visual areas in accordance with the demands of the
task (Dosher & Lu, 2009; Petrov, Dosher, & Lu, 2005). On this
account, errors in the centroid estimation task arise from improper
weighting of units coding for specific locations. Most models of
learning proceed by incremental updating of the weights associ-
ated with active units that contributed to the error (i.e., coding for
position vectors that are correlated with the error vector), in
proportion to error magnitude (i.e., gradient descent). Over several
such trials of a centroid estimation task, such error-based updating
would result in convergence upon uniform weights, eliminating
systematic bias because of improper integration of individual item
location information. This kind of learning mechanism would be
predicted to facilitate generalization to novel displays with random
item locations, but not necessarily to new tasks requiring a differ-
ent set of weights. Although the centroid may be a well-learned
statistical summary feature for an adult observer, such a mecha-
nism may help to explain how novel (Bauer, 2009) or high-level
summary features (e.g., mean facial expression; Haberman &
Whitney, 2007) are learned.

A third possibility is that participants learn statistical properties
of the distribution that was most likely to have generated the visual
arrays. This form of statistical learning would allow the participant
to generate perceptual expectations about the likely location and
dispersion of items on each trial, resulting in a more efficient
representation of arrays drawn from this distribution (Chalk, Seitz,
& Series, 2010; Michael, de Gardelle, & Summerfield, 2014;
Simoncelli & Olshausen, 2001). Such an internal model of stim-
ulus statistics does not prescribe how information about individual
item locations should be combined to make a response on any
given trial. However, it may nevertheless exert an influence on
how apparent outliers are weighted in the centroid computation,
that is, by discounting these items that appear unlikely to have
arisen from the same distribution as the others (Haberman &
Whitney, 2010). In this scenario, vector error feedback may serve
to correct for such a tendency to discount outliers by increasing the
internal estimate of the variability in item locations. This account

has intuitive appeal, as it posits that learning occurs by tuning a
higher-order statistical representation that mirrors the demands of
the task (i.e., estimating summary statistics from randomly sam-
pled items). However, as an account of error-driven learning, it is
complicated by the fact that the correspondence between trial-by-
trial vector error feedback and updating of these model parameter
estimates is underdetermined. Future studies employing more
complex stimulus distributions may elucidate how learning such
statistics interacts with feedback.

Although we interpret our findings as supporting the notion that
spatially precise sensory-error feedback enhanced the underlying
centroid representation, these results are also consistent with the
possibility that such transfer may only occur in the case of per-
ceptual tasks requiring a discrete response, as in the quadrant task
(Experiments 1 and 2) and the grid task (Experiment 4). Indeed,
although participants do select a particular grid cell when making
their response, their responses carried spatial precision that was on
the order of what they were able to select with their fingertip in the
pointing task. Thus, the grid task provided quasi-continuous re-
sponse data that were well suited for measuring continuous
changes to the fidelity of the centroid representation, irrespective
of the discrete nature of grid cell selection.

What kinds of statistical summary representations are most
responsive to training? In this study, we focused on how feedback
and task practice influenced averaging over a simple visual feature,
namely, location. However, it has been previously shown that
people are also able to extract averages for complex visual features
(Haberman & Whitney, 2007). There is recent evidence that mul-
tiple distinct mechanisms might underlie the ability to extract
low-level and high-level summary features (Haberman, Brady, &
Alvarez, 2015). The relative plasticity of different statistical sum-
mary representations may be constrained by the type of mecha-
nism that is responsible for performing these summary operations.

In the case of low-level summary perception, these features may
be readily and automatically computed (e.g., mean orientation) at
a coarse level of resolution, but acuity may be enhanced based on
the actual statistics and range of feature values experienced. How-
ever, in the case of high-level summary perception, experience and
feedback may be especially critical for shaping these summary
representations over time. Characterizing the type of feedback and
training required to induce improvement in the fidelity of statisti-
cal summary representations of abstract, complex visual features
would be a fruitful avenue for future research.

Conclusions

Overall, there are two main implications of our findings. First,
they suggest that statistical summary representations are not
merely an automatic consequence of visual experience, but can be
tuned based on external feedback to further optimize performance
given specific perceptual goals. Moreover, they show that changes
in the fidelity of these perceptual representations may be depen-
dent on the type of sensory error information available during
learning, suggesting constraints on the mechanisms by which such
tuning may occur.
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