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SUMMARY
The hippocampus is essential for human memory.1 The protracted maturation of memory capacities from in-
fancy through early childhood2–4 is thus often attributed to hippocampal immaturity.5–7 The hippocampus of
human infants has been characterized in terms of anatomy,8,9 but its function has never been tested directly
because of technical challenges.10,11 Here, we use recently developedmethods for task-based fMRI in awake
human infants12 to test the hypothesis that the infant hippocampus supports statistical learning.13–15 Hippo-
campal activity increased with exposure to visual sequences of objects when the temporal order contained
regularities to be learned, compared to when the order was random. Despite the hippocampus doubling in
anatomical volume across infancy, learning-related functional activity bore no relationship to age. This sug-
gests that the hippocampus is recruited for statistical learning at the youngest ages in our sample, around
3 months. Within the hippocampus, statistical learning was clearer in anterior than posterior divisions.
This is consistent with the theory that statistical learning occurs in the monosynaptic pathway,16 which is
more strongly represented in the anterior hippocampus.17,18 The monosynaptic pathway develops earlier
than the trisynaptic pathway, which is linked to episodic memory,19,20 raising the possibility that the infant
hippocampus participates in statistical learning before it forms durablememories. Beyond the hippocampus,
the medial prefrontal cortex showed statistical learning, consistent with its role in adult memory integration21

and generalization.22 These results suggest that the hippocampus supports the vital ability of infants to
extract the structure of their environment through experience.
RESULTS

Role of infant hippocampus in statistical learning
We collected brain imaging data across 24 sessions (lab visits)

from 17 unique infants (14 sessions from 10 females) aged 3–

24 months. We defined anatomical regions of interest (ROIs) us-

ing a structural MRI obtained in each session (Figure 1A). We

manually segmented the hippocampus bilaterally from the sur-

rounding medial temporal lobe (MTL) cortex. The volume of the

hippocampal ROIs was strongly related to age (left b =

68.0 mm3/month, r = 0.88, p < 0.001; right b = 68.5 mm3/month,

r = 0.84, p < 0.001), with the hippocampus approximately

doubling in volume over the age range (Figure 1B). Global brain

volume increased dramatically with age too (r = 0.90; p <

0.001), but the change in bilateral hippocampal volume persisted

after controlling for this global growth (rpartial = 0.44; p = 0.005).

This suggests that the hippocampus grows rapidly in size during

infancy, at a faster rate than average in the brain.

We used fMRI tomeasure activity in the hippocampus during a

statistical learning task. Infants viewed continuous sequences of

colorful, fractal-like objects that appeared dynamically in a loom-

ing motion. The sequences were presented in blocks that alter-

nated between structured and random conditions.14 In struc-

tured blocks (Figure 2A), temporal regularities were embedded

in the sequence: fractals appeared in pairs such that the first
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fractal was always followed by the second. In random blocks

(Figure 2B), therewere no regularities in the sequence: all fractals

were equally likely to follow each other. Different sets of fractals

were used for structured and random blocks (counterbalanced

across sessions), but the fractal set for a given condition was

held constant across blocks, as were the pairs generated from

the structured set. Other than the lack of regularities, the random

condition was closely matched to the structured condition,

including the number, frequency, and timing of fractals. Any dif-

ference in brain activity between structured and random blocks

can thus be attributed to the regularities in structured blocks.23

Importantly, representing these regularities required learning:

pairs could only be extracted from the continuous sequence

by encoding and integrating repeating patterns of co-occur-

rence. In other words, because pairings were arbitrary, at any

given moment in a structured block, it was impossible to know

which fractals were paired; the pairs only existed in the mind of

the observer because of the history of how the fractals appeared

together earlier in the block or in preceding blocks.

To capture this learning over time, we divided the blocks in

each condition into the first half of exposure (when we expected

less evidence of learning) and the second half of exposure (when

we expected more robust learning effects). We then calculated

the difference in blood-oxygen-level-dependent (BOLD)

response in the bilateral hippocampus between structured and
Inc.
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Figure 1. Hippocampal regions of interest

(A) Anatomical segmentation of the infant hippocampus and medial temporal

lobe cortex in two representative participants, aged 5.2 (top) and 14.5 (bottom)

months. Intensity of brain images inverted to highlight gray matter.

(B) Volume of the left and right hippocampus by participant age. Each session

is represented by a red and blue dot at the same age coordinate.

See also Figure S3.
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random blocks (Figure 3A). In the first half, there was no differ-

ence in hippocampal activity between structured and random

blocks (M = 0.14; confidence interval [CI] = [�0.358, 0.656];

p = 0.614). However, in the second half, there was significantly

greater hippocampal activity in structured than random blocks

(M = 0.67; CI = [0.172, 1.176]; p = 0.007). This difference in the

second half was larger than in the first half, as revealed by signif-

icant interaction between condition and half (M = 0.50; CI =

[0.028, 0.966]; p = 0.037). This learning-related interaction did

not differ based on whether infants encountered a structured

or random block first (M = �0.51; CI = [�1.503, 0.454]; p =

0.296). Although infants looked less in the second than first

half (M = �0.10; CI = [�0.187, �0.015]; p = 0.021), perhaps re-

flecting boredom or fatigue, there were no differences in looking

time between structured and random blocks (M = 0.06; CI =

[�0.013, 0.146]; p = 0.107), nor was there an interaction in
gaze behavior between condition and half (M = 0.02; CI =

[�0.057, 0.104]; p = 0.604).

The hippocampal interaction between condition and half did

not significantly correlate with infant age (Figure 3B; r = �0.03;

p = 0.893). Bayesian regression24 found what is considered

‘‘anecdotal’’ evidence25 in favor of the null hypothesis of no

age relationship (Bayes factor = 0.376). This null did not reflect

a general inability to resolve age relationships in our sample, as

hippocampal volume reliably increased (Figure 1B). Hippocam-

pal volume did not relate to the interaction effect (r = �0.05;

p = 0.775) and, when controlling for hippocampal volume, the

relationship between the interaction effect and age remained

non-significant (r = 0.03; p = 0.883). These findings suggest

that, from as young as 3 months old, the hippocampus is able

to support statistical learning. This represents the first evidence

of task-related activity in the hippocampus of human infants to

our knowledge.

Subdivisions of the hippocampus
We hypothesized that the hippocampus is involved in infant sta-

tistical learning partly because of the early development of the

monosynaptic pathway from entorhinal cortex to CA1.16,19,20

There are no established protocols for segmenting hippocampal

subfields in infants that would allow us to directly assay CA1, and

so instead we used the longitudinal axis of the hippocampus as a

proxy (Figure 3C). Namely, the anterior hippocampus contains

more of CA1 than posterior hippocampus,17,18 and so we pre-

dicted clearer evidence of statistical learning in the anterior hip-

pocampus (Figure 3E). Indeed, whereas the anterior hippocam-

pus showed no difference between structured and random

blocks in the first half (M = 0.07; CI = [�0.489, 0.648]; p =

0.846), there was a robust difference in the second half (M =

0.73; CI = [0.202, 1.257]; p = 0.006) and a significant interaction

between condition and half (M = 0.58; CI = [0.091, 1.063]; p =

0.018). The posterior hippocampus again showed no difference

in the first half (M = 0.23; CI = [�0.216, 0.727]; p = 0.328), but the

difference in the second half was numerically weaker than in the

anterior hippocampus (M = 0.60; CI = [0.062, 1.112]; p = 0.028)

and the interaction did not reach significance (M = 0.39; CI =

[�0.106, 0.879]; p = 0.119); the interaction in posterior was not

significantly weaker than in anterior (M = 0.19; CI = [�0.086,

0.477]; p = 0.174).

We also divided the hippocampus into left and right hemi-

spheres. Adult fMRI studies have reported statistical learning ef-

fects more consistently in the right hippocampus.23,26 This same

pattern was found in infants (Figure 3D), with clearer evidence of

statistical learning in the right hippocampus (first half: M = 0.09,

CI = [�0.428, 0.635], p = 0.759; second half: M = 0.75, CI =

[0.243, 1.243], p = 0.003; interaction: M = 0.60, CI = [0.116,

1.090], p = 0.013) than in the left hippocampus (first half: M =

0.20, CI = [�0.345, 0.754], p = 0.500; second half: M = 0.59,

CI = [0.021, 1.132], p = 0.043; interaction: M = 0.38, CI =

[�0.135, 0.890], p = 0.155); the interaction in left was not signif-

icantly weaker than in right (M = 0.22; CI = [�0.106, 0.574]; p =

0.207). Above, we treated comparisons between anterior and

posterior and left and right hippocampus separately based on

distinct theoretical motivations. However, we found evidence

that these divisions interact (M = �0.52; CI = [�0.903, �0.164];

p = 0.003). Namely, a hemispheric difference in the learning
Current Biology 31, 3358–3364, August 9, 2021 3359
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Figure 2. Statistical learning task design

Participants viewed colorful fractals one at a time in blocks. The blocks alternated between structured and random conditions within participant. Different fractals

were shown in each condition but remained consistent over blocks.

(A) In structured blocks, fractals were grouped into three pairs (AB, CD, EF), with the firstmember of a pair (e.g., A) always followed by the second (e.g., B), which in

turn was followed by the beginning of the next pair without interruption. As a result, the pairs could only be learned based on the transition probabilities in the

sequence (100% within pair; 33% between pairs).

(B) In random blocks, fractals (G, H, I, J, K, and L) appeared in a random order with no back-to-back repetitions. As a result, there was no structure in their

transition probabilities (uniform 20%). Because fractals were randomly assigned to the conditions and individually appeared an equal number of times within and

across blocks (to equate familiarity), the conditions differed only in the opportunity for statistical learning. Participants completed up to 12 blocks, and usable

blocks were split into the first and second half of exposure.

See also Table S1.
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effect was more apparent in posterior than anterior hippocam-

pus (Figure S1). In sum, the overall pattern of learning-related

signals across the longitudinal and hemispheric axes of the infant

hippocampus is consistent with primate anatomy,19,20 computa-

tional models,16 and adult function.23,26

Time course of hippocampal involvement
Splitting the fMRI data into the first and second half of exposure in

the main analyses was an attempt to capture learning over time

while retaining enough blocks per time bin to estimate stable ef-

fects. We also examined learning over time more continuously

at the block level (Figure S2). Adopting a supersubject approach,

wepooled usable blocks across sessions and assessed statistical

significance with bootstrap resampling. The difference between

structured and random blocks was largest and only statistically

significant in the fifth and sixth blocks (of six). In other words, neu-

ral evidence of statistical learning emerged after about 2 min of

exposure to structured blocks (four blocks of 36 s). This amount

of exposure is consistent with the duration of classic behavioral

studies of statistical learning in infants.14,15 This suggests that

fMRI can serve as a sensitive, convergingmeasure of infant cogni-

tion, even for relatively short task designs.
3360 Current Biology 31, 3358–3364, August 9, 2021
Engagement of neocortical systems
Although the hippocampus was the focus of this study, we also

compared structured and random blocks in surrounding MTL

cortex. Despite being anatomically adjacent and a larger ROI,

we found only weak evidence of statistical learning inMTL cortex

(Figure S3), highlighting the selectivity of our results to the hippo-

campus within the broader MTL. We additionally performed

exploratory voxelwise analyses across the whole brain with

data aligned to standard space (Figure 4). The key learning inter-

action in the hippocampus between condition (structured versus

random) and half (second versus first) was found elsewhere only

in medial prefrontal cortex (mPFC) after correction for multiple

comparisons (t(23) = 5.13; corrected p = 0.048; 116 voxels;

MNI: �5, 53, 4). Involvement of mPFC in statistical learning is

consistent with its role in memory integration21 and generaliza-

tion.22 The mPFC and hippocampus are both part of the default

mode network.27 Thus, an alternative explanation for their

greater activity in the second half of the structured condition

could be an increase in task disengagement (e.g., habituation,

boredom, self-reflection). Inconsistent with this possibility, a

follow-up analysis of other default mode regions did not exhibit

the same interaction (Figure S4).
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Figure 3. Neural evidence of statistical learning in infant hippocampus

(A) Mean difference in normalized parameter estimates of BOLD activity between structured and random blocks in bilateral hippocampus. A reliable difference

emerged by the second half, which was significantly greater than in the first half. Each gray dot is one session.

(B) Using the interaction between condition and half as a metric of hippocampal statistical learning, there was no relationship with participant age.

(C) Three-dimensional rendering of an example hippocampal segmentation (14.1 months old).

(D and E) Mean difference in BOLD activity between structured and random blocks in (D) left (red) and right (blue) hippocampus and in (E) anterior (dark) and

posterior (light) hippocampus.

Error bars reflect standard error of the mean across sessions within half. *p < 0.05; **p < 0.01. See also Figures S1 and S2.
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DISCUSSION

We present the first study that uses fMRI to study cognitive,

rather than visual or auditory,28–30 processing in infants. The

key finding of this study is that activity in the hippocampus of

human infants increases through exposure to regularities.

This activity may correspond to different stages of statistical

learning. It could reflect the process of extracting regularities

during learning, with differences emerging in the second half

because a certain amount of exposure was needed to compute

the transition probabilities between fractals and represent the

pairs. In adults, the hippocampus is often recruited more

strongly early in learning,31,32 when stimuli are novel.33 Hence,

it is possible that greater hippocampal activity for structured

versus random in the second half would eventually dissipate

or reverse if we continued to present blocks. How much expo-

sure results in increased versus decreased hippocampal
activity with learning will likely depend on the complexity of in-

formation to be learned (e.g., discrete items versus statistical

relationships) and on the nature of the task (e.g., incidental

versus intentional encoding).

It is also possible that greater hippocampal activity for struc-

tured versus random would persist with more exposure, if this

activity reflects additional cognitive processes triggered by the

regularities. In particular, the first item of each learned pair in

structured blocks may trigger a hippocampal process of predic-

tion or pattern completion of the second item.34,35 In addition to

clarifying the timing and consequences of hippocampal partici-

pation in infant statistical learning, future research is needed to

determine whether this role is necessary for behavioral expres-

sion of statistical learning. This will be difficult to test in infants,

but studies in adult patients with hippocampal damage suggest

that the hippocampusmay in fact be necessary for normal statis-

tical learning behavior.36,37
Current Biology 31, 3358–3364, August 9, 2021 3361
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A B Figure 4. Exploratory whole-brain analysis

(A and B) Voxelwise contrast of BOLD activity

between structured and random blocks in (A) the

first half and (B) the second half.

(C) The medial prefrontal cortex (mPFC) showed

an interaction between condition and half, with a

greater difference between structured and

random in the second versus first half. <br>Voxels

in color were significant after correction for multi-

ple comparisons (threshold-free cluster enhance-

ment; one-tailed corrected p < 0.05). Coordinates

are in MNI space. See also Figure S4.
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The involvement of the infant hippocampus in statistical

learning has implications for theories of memory. According to

complementary learning systems,38 episodic memory is a precur-

sor to statistical learning. The hippocampus rapidly encodes indi-

vidual experiences and then, through a process of consolidation,

the neocortex gradually generalizes across these episodic mem-

ories to extract regularities. Infants present a conundrum for this

framework: they show robust statistical learning,14,15 despite im-

poverished episodic memory.2–4 A recent update to the theory16

suggests a potential resolution, at least for the rapid form of statis-

tical learning in our study. Neural network simulations showed that

such statistical learning can occur within the hippocampus itself in

a way that bypasses the circuitry for episodic memory. Thus, the

hippocampus may support statistical learning in infants, as re-

ported in this study, before it can support episodic memory. We

show that the hippocampus grows substantially in size during in-

fancy9 yet find that evidence of statistical learning in hippocampal

activity does not increase over the same period. Speculatively,

anatomical growth of the hippocampus over infancy may support

the emergence of episodicmemory. Thiswould be consistentwith

the slower development in primate hippocampus20 of the trisy-

naptic pathway, linked to episodic memory, than the monosyn-

aptic pathway, linked to statistical learning.16 Indeed, this pattern

continues through childhood, with a shift in relative volume from

anterior to posterior hippocampus that correlates with episodic

memory.39,40 Alternatively, episodic memory may be more devel-

oped in infants than currently known—consistent with recent ro-

dent work41,42—such that the hippocampal statistical learning

we report may in fact be dependent upon episodic memory.

Future research could address these possibilities by using fMRI

with awake infants to capture sensitive neural measures of

episodic memory functions in the hippocampus, including pattern

separation, relational binding, and pattern completion.

Outside of the hippocampus, we observed involvement of the

mPFC in statistical learning. This is striking, given the dramatic

changes in frontal lobe anatomy over development.43 In adults,

mPFC strongly interacts with the hippocampus during memory
3362 Current Biology 31, 3358–3364, August 9, 2021
formation, facilitating encoding based on

related past experiences (i.e., schemas)

to promote memory integration21 and

consolidation.44 Indeed, mPFC has been

linked to gradual statistical learning over

days and weeks in rodents.22 It remains

to be seen whether this mechanism con-

tributes to rapid statistical learning over
minutes in human infants, as tested here. Evidence for frontal

involvement in this task is broadly consistent with recent research

suggesting that the frontal cortex plays an important role in infant

cognition.45–47 An important limitation of the current study is the

inability of fMRI to distinguish whether evidence of statistical

learning in the hippocampus originates in the hippocampus or is

a reflection of processing in the mPFC, given their connectivity.

Another limitation of the current study is that we did not obtain

a behavioral measure of statistical learning. Neural measures

have proven sensitive to related forms of statistical learning

that do not manifest strongly in behavior.23,26 Indeed, fMRI activ-

ity can be viewed as a dependent measure to be added to the

toolkit of infant cognition,11 perhaps no less direct than tradi-

tional infant behavioral measures, such as looking time or skin

conductance. We carefully designed our study so that the

random blocks controlled for all aspects of structured blocks

except the presence of regularities. Because these regularities

do not exist in the stimulus per se but rather in the mind of the

observer by linking experiences over time, we attribute observed

neural differences to statistical learning. Nevertheless, it will be

important for future studies to combine neural and behavioral

measures, for example, bymeasuring predictive eyemovements

concurrently with fMRI activity and evaluating how they are

related within and across participants.

To conclude, we present the first evidence that the hippocam-

pus is recruited for learning in human infants. This demonstrates

that brain systems used for learning throughout the lifespan can

be available from some of the earliest stages of life. In turn, this

provides a starting point for understanding how the human brain

supports the prodigious amount of learning that occurs during

infancy, establishing building blocks critical for subsequent

growth and education.

STAR+METHODS
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Turk-Browne, N.B. (2020). Re-imagining fMRI for awake behaving infants.

Nat. Commun. 11, 4523.

13. Fiser, J., and Aslin, R.N. (2002). Statistical learning of new visual feature

combinations by infants. Proc. Natl. Acad. Sci. USA 99, 15822–15826.

14. Kirkham, N.Z., Slemmer, J.A., and Johnson, S.P. (2002). Visual statistical

learning in infancy: evidence for a domain general learning mechanism.

Cognition 83, B35–B42.

15. Saffran, J.R., Aslin, R.N., and Newport, E.L. (1996). Statistical learning by

8-month-old infants. Science 274, 1926–1928.

16. Schapiro, A.C., Turk-Browne, N.B., Botvinick, M.M., and Norman, K.A.

(2017). Complementary learning systems within the hippocampus: a neu-

ral network modelling approach to reconciling episodic memory with sta-

tistical learning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160049.

17. Canada, K.L., Hancock, G.R., and Riggins, T. (2021). Modeling longitudi-

nal changes in hippocampal subfields and relations with memory from

early- to mid-childhood. Dev. Cogn. Neurosci. 48, 100947.

18. Malykhin, N.V., Lebel, R.M., Coupland, N.J., Wilman, A.H., and Carter, R.

(2010). In vivo quantification of hippocampal subfields using 4.7 T fast spin

echo imaging. Neuroimage 49, 1224–1230.

19. Hevner, R.F., and Kinney, H.C. (1996). Reciprocal entorhinal-hippocampal

connections established by human fetal midgestation. J. Comp. Neurol.

372, 384–394.

20. Lavenex, P., and Banta Lavenex, P. (2013). Building hippocampal circuits

to learn and remember: insights into the development of human memory.

Behav. Brain Res. 254, 8–21.

21. Schlichting, M.L., Mumford, J.A., and Preston, A.R. (2015). Learning-

related representational changes reveal dissociable integration and sepa-

ration signatures in the hippocampus and prefrontal cortex. Nat. Commun.

6, 8151.

22. Richards, B.A., Xia, F., Santoro, A., Husse, J., Woodin, M.A., Josselyn,

S.A., and Frankland, P.W. (2014). Patterns across multiple memories are

identified over time. Nat. Neurosci. 17, 981–986.
Current Biology 31, 3358–3364, August 9, 2021 3363

https://doi.org/10.1016/j.cub.2021.04.072
https://doi.org/10.1016/j.cub.2021.04.072
https://doi.org/10.37717/2020-1208
https://doi.org/10.37717/2020-1208
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref1
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref1
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref2
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref2
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref3
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref3
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref3
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref4
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref4
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref5
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref5
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref5
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref6
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref6
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref7
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref7
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref7
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref7
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref8
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref8
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref8
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref9
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref9
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref9
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref9
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref10
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref10
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref11
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref11
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref11
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref12
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref12
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref12
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref13
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref13
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref14
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref14
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref14
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref15
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref15
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref16
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref16
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref16
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref16
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref17
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref17
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref17
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref18
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref18
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref18
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref19
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref19
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref19
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref20
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref20
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref20
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref21
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref21
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref21
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref21
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref22
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref22
http://refhub.elsevier.com/S0960-9822(21)00619-9/sref22


ll
Report
23. Turk-Browne, N.B., Scholl, B.J., Chun, M.M., and Johnson, M.K. (2009).

Neural evidence of statistical learning: efficient detection of visual regular-

ities without awareness. J. Cogn. Neurosci. 21, 1934–1945.

24. Morey, R.D., and Rouder, J.N. (2018). BayesFactor: computation of Bayes

factors for common designs. https://cran.r-project.org/web/packages/

BayesFactor/index.html.

25. Lee, M.D., and Wagenmakers, E.J. (2014). Bayesian Cognitive Modeling:

A Practical Course (Cambridge University).

26. Schapiro, A.C., Kustner, L.V., and Turk-Browne, N.B. (2012). Shaping of

object representations in the human medial temporal lobe based on tem-

poral regularities. Curr. Biol. 22, 1622–1627.

27. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A.,

and Shulman, G.L. (2001). A default mode of brain function. Proc. Natl.

Acad. Sci. USA 98, 676–682.

28. Biagi, L., Crespi, S.A., Tosetti, M., and Morrone, M.C. (2015). BOLD

response selective to flow-motion in very young infants. PLoS Biol. 13,

e1002260.

29. Deen, B., Richardson, H., Dilks, D.D., Takahashi, A., Keil, B., Wald, L.L.,

Kanwisher, N., and Saxe, R. (2017). Organization of high-level visual cortex

in human infants. Nat. Commun. 8, 13995.

30. Dehaene-Lambertz, G., Dehaene, S., and Hertz-Pannier, L. (2002).

Functional neuroimaging of speech perception in infants. Science 298,

2013–2015.

31. Kumaran, D., and Maguire, E.A. (2006). An unexpected sequence of

events: mismatch detection in the human hippocampus. PLoS Biol. 4,

e424.
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Raw and preprocessed data Dryad Digital Repository https://doi.org/10.5061/dryad.2z34tmpmf

Software and algorithms

MATLAB v. 2017a Mathworks https://www.mathworks.com

Python v. 3.6 Python Software Foundation https://www.python.org

FSL v. 5.0.9 FMRIB https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

Experiment menu v. 1.1 Yale Turk-Browne Lab https://github.com/ntblab/experiment_menu

Infant neuropipe v. 1.3 Yale Turk-Browne Lab https://github.com/ntblab/infant_neuropipe
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the Lead Contact, Nicholas Turk-Browne (nicholas.

turk-browne@yale.edu).

Materials availability
This study did not generate new materials.

Data and code availability
The code for running the statistical learning task can be found at: https://github.com/ntblab/experiment_menu. The code for per-

forming the analyses can be found at: https://github.com/ntblab/infant_neuropipe/tree/StatLearning. The data, including anony-

mized anatomical images, manually traced ROIs, and both raw and preprocessed functional images can be found at: https://doi.

org/10.5061/dryad.2z34tmpmf.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Data from 24 sessions with infants aged 3.6 to 23.1 months (M = 11.6; SD = 5.8; 14 female) met our minimum criteria for inclusion of

six usable task blocks with at least one pair of Structured and Random blocks in each of the first and second halves of exposure (M =

11.8 total blocks; M = 9.8 usable blocks). This sample does not include data from 11 sessions with enough blocks only prior to ex-

clusions for head motion, eye gaze, and counterbalancing (M = 9.8 total blocks; M = 3.5 usable blocks), or from 44 sessions without

enough blocks even prior to exclusions (M = 3.6 total blocks) where the infant instead participated in other experiments. This corre-

sponds to 79 attempted scan sessions. In the final sample, 11 participants provided one session of usable data, five infants provided

two sessions, and one infant provided three. These sessions occurred at least onemonth apart (range = 1.1–9.3) and so the datawere

treated separately, similar to prior work.29 Of the 24 sessions, six were collected at the Scully Center for the Neuroscience of Mind

and Behavior at Princeton University, four were collected at the Magnetic Resonance Research Center (MRRC) at Yale University,

and 14 were collected at the Brain Imaging Center (BIC) at Yale University. Refer to Table S1 for information on each session. Parents

provided informed consent on behalf of their child. The studywas approved by the Institutional ReviewBoards at Princeton University

and Yale University.

METHOD DETAILS

Data acquisition
Brain imaging data were acquiredwith a Siemens Skyra (3T) MRI at Princeton University and a Siemens Prisma (3T)MRI for both sites

at Yale University, in all cases with the 20-channel Siemens head coil. Anatomical images were acquired with a T1-weighted PETRA

sequence (TR1 = 3.32ms, TR2 = 2250ms, TE = 0.07ms, flip angle = 6�, matrix = 320x320, slices = 320, resolution = 0.94mm iso, radial

slices = 30000). Functional images were acquired with a whole-brain T2* gradient-echo EPI sequence that was the same at Princeton

and Yale MRRC (TR = 2 s; TE = 28ms; flip angle = 71�; matrix = 64x64; slices = 36; resolution = 3mm iso; interleaved slice acquisition)

and almost identical at Yale BIC (except TE = 30ms; slices = 34).
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Procedure
Conducting fMRI research with awake infants presents many challenges. We have described and validated our protocol in detail in a

separatemethods paper.12 In brief, families visited the lab prior to their first scanning session for an orientation session. This served to

acclimate the infant and parent to the scanning environment. Scanning sessions were scheduled for a time when the parents felt the

infant would be calm and happy. The infant and parent were extensively screened for metal. Hearing protection was applied to the

infant in three layers: silicon inner ear putty, over-ear adhesive covers, and ear muffs. The infant was placed on the scanner bed, on

top of a vacuum pillow that comfortably reduced movement. The top of the head coil was not used because the bottom elements

provided sufficient coverage of the smaller infant head. We determined this in a previous study covering the same age range,12

by measuring the signal strength in anterior and posterior portions of the brain. We found a similar proportion of signal drop-off in

infants without the top of the head coil as we did in adults with the top of the head coil, owing to their smaller brains in closer proximity

to the bottom elements. The lack of top coil created better visibility formonitoring infant comfort and allowed us to project stimuli onto

the ceiling of the bore directly above the infant’s face using a custommirror system. A video camera (Princeton and YaleMRRC:MRC

12M-i camera; Yale BIC: MRC high-resolution camera) recorded the infant’s face during scanning for monitoring and eye tracking.

One or occasionally two parents remained in the scanner room within arm’s reach of the infant at all times. They were accompanied

by an experimenter who explained the process, answered questions, and directed the scan in collaboration with the parent(s). The

experimenters were non-clinical staff experienced in developmental research. Either the parent or experimenter would comfort the

child when necessary by, for example, holding their hand or patting their stomach.

When the infant was calm and focused, stimuli were shown in MATLAB using Psychtoolbox (http://psychtoolbox.org). The stimuli

were colorful, fractal-like images used previously in studies of statistical learning in adults.26,34 Images appeared every 1 s, looming in

size from 2.4� of visual angle at onset to 14.6� at offset.14 Each block contained 36 images presented sequentially one at a time in a

unique order, followed by 6 s of rest with the screen blank.

Blocks alternated between Structured and Random conditions (Figure 2). Which condition appeared first was assigned randomly.

Thus, the elapsed time from the start of the experiment was approximately matched between conditions. In the Structured condition,

six fractals (A-F) were organized into three pairs (AB, CD, EF). The sequence of each block was generated by randomly inserting six

repetitions of each pair. The first member of a pair (A, C, E) was always followed by the second (B, D, F, respectively) resulting in a

transition probability of 1.0. After the second member of a pair, another pair began, resulting in a transition probability of 0.33 on

average. In the Random condition, six different fractals (G-L) were presented individually. The sequence of each block was generated

by randomly inserting six repetitions of each fractal, avoiding back-to-back repetitions of the same fractal. This resulted in a uniform

transition probability of 0.20 on average. The six fractals in each condition were consistent across all blocks of that condition. For

participants who attempted the experiment in more than one session, different stimuli were used across sessions.

Gaze coding
Infant gaze was coded offline by two or more coders (M = 2.7) blind to the block condition. The coders determined whether the gaze

was on-screen, off-screen (i.e., blinking or looking away), or undetected (i.e., out of the camera’s field of view or obscured by a hand

or other object). Across coders, every video frame was coded at least once. The frame rate and resolution varied by camera and site,

but the minimum rate was 16Hz and we always had sufficient resolution to identify the eye. The coded category for each frame was

determined as themode of a moving window of five frames centered on that frame across all coder reports. In case of a tie, themodal

response from the previous framewas used. The coders were highly reliable: when coding the same frame, coders reported the same

response on 93% (SD = 6%; range across sessions = 73%–99%) of frames. Infants included in the final sample looked at the stimulus

89% of the time on average (range = 80.3%–97.3%). Blocks were excluded if the eyes were off-screen for 50+% of the block. One

participant did not have eye-tracking data due to a technical problem but real-time monitoring confirmed that their eyes were open

and attending to the stimulus for at least 50% of each block.

QUANTIFICATION AND STATISTICAL ANALYSIS

Preprocessing
Individual runs were preprocessed using FEAT in FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), with modifications optimized for infant

data. We discarded three volumes from the beginning of each run, in addition to the volumes automatically discarded by the EPI

sequence. Blocks were stripped of any excess burn-in or burn-out volumes beyond the 3 TRs (6 s) of rest after each block. We at-

tempted to collect all data within one run, lasting approximately 8.5 minutes. We did not finish the planned 12 blocks in 4 of the ses-

sions because the parent or experimenter made a judgment call that the infant was not attentive to the display (e.g., falling asleep,

distracted by camera or other objects in bore, lifting head). For 7 sessions, we took a break during data collection (break M = 637 s;

range = 115–1545 s). These breaks could involve switching to an anatomical scan or getting out of the scanner. If other tasks, not

discussed here, were included in a run before or after this experiment, we excised them to form an experiment-specific pseudo-

run (N = 12 sessions).

The reference volume for alignment and motion correction was chosen as the ‘centroid’ volume with the minimal Euclidean dis-

tance from all other volumes. The slices in each volume were realigned with slice-time correction. Time-points were excluded if there

was greater than 3 mm of movement from the previous time-point (M = 8.9%; range = 0.0%–21.3%). We interpolated rather than

excised these time-points so that they did not bias the linear detrending (in later analyses these time-points were excised). Blocks
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were excluded if 50+% of the time-points were excluded. The mask of brain and non-brain voxels was created from the signal-to-

fluctuating-noise ratio (SFNR) for each voxel in the centroid volume. The data were spatially smoothed with a Gaussian kernel (5 mm

FWHM). Linear trends in time were removed using a high-pass filter to control for generic time-dependent effects unrelated to the

task. The despiking algorithm in AFNI (https://afni.nimh.nih.gov) was used to attenuate aberrant time-points within voxels. This algo-

rithm fits a curve to the voxel time series and finds the residuals of that curve. The variance in those residuals is computed and any

time points that are outliers are removed via interpolation. For further explanation and justification of these preprocessing proced-

ures, please see Ellis et al.12

We registered each run’s centroid volume to the infant’s anatomical scan from the same session. We used FLIRTwith a normalized

mutual information cost function for initial alignment. Supplemental manual registration was then performed using mrAlign from

mrTools (Gardner lab) to fix deficiencies of automatic registration. The preprocessed functional data were aligned into anatomical

space but kept in their original spatial resolution (3mm iso). ROI analyses were performedwithin this native space of each participant.

Whole-brain voxelwise analyses required further alignment of functional data into a standard space. The anatomical scan from each

session was automatically (FLIRT) and manually (Freeview) aligned to an age-specific MNI infant template.48 Combined with align-

ment of these templates to the adult MNI template (MNI152), the functional data were transformed into standard space. To determine

which voxels to consider at the group level, the intersection of brain voxels from all infant participants in standard space was used as

a whole-brain mask.

Because runs could contain different numbers of blocks from the Structured and Random conditions, blocks were only retained if

they could be paired with a block from the other condition in the same run. This counterbalancing was enforced to ensure an equal

amount of data in each condition. The blocks were labeled by the count of how many blocks from that condition had already been

seen (henceforth, their ‘seen-count’). For example, if an infant was watching the screen but moving too much in their first Structured

block, then remained still in their second Structured block, the first usable block of that condition would be labeled with a seen-count

of 2. Blocks were chosen to be paired across conditions so as to minimize the difference in seen-counts (i.e., to match the degree of

exposure as best possible).

For an infant to be included, they needed to have at least three blocks from each condition, with at least one block in each condition

from blocks 1 to 3 (first half) and at least one block in each condition from blocks 4 to 6 (second half). Using these criteria, the average

number of included blocks for the usable sessionswas 9.8 (SD = 1.9; range = 6–12), including 5.5 blocks in the first half and 4.3 blocks

in the second half on average. There was no correlation between the number of included blocks and age (r =�0.05; p = 0.788). We did

not find a difference between the proportion of Structured (M = 0.89) and Random (M = 0.86) blocks that were included (CI = [�0.019,

0.088]; p = 0.210). The block order was determined randomly, with 15 sessions starting with a Structured block and 9 sessions start-

ing with a Random block (as reported in the main text, there were no reliable order effects on the neural results). To account for dif-

ferences across runs in intensity and variance, the blocks that survived exclusions and balancing across conditions were normalized

over time within run using z-scoring, prior to the runs being concatenated for further analyses.

Regions of interest
The main analyses involved manually tracing ROIs in the medial temporal lobe (MTL) based on anatomical landmarks and then as-

sessing evoked BOLD responses across voxels in these anatomical ROIs. To trace the ROIs, we extended a published protocol for

MTL segmentation in adults49 with help from protocols for hippocampal segmentation in infants.50 The segmentation demarcated

ROIs for the left and right hippocampus, each of which encompassed the subiculum, CA1, CA2/3, and dentate gyrus subfields.

We did not segment these individual subfields because of the lack of validated anatomical guidelines for subfield boundaries in in-

fants. For completeness, we also defined ROIs for the left and right MTL cortex (Figure S3), each of which contained entorhinal, peri-

rhinal, and parahippocampal cortices (again not segmented individually).

To examine the reliability of the coder segmenting the infant hippocampus, we asked an expert in segmentation of the adult hip-

pocampus to segment two of the infants. Using Dice similarity,51 the consistency of labeling was 0.524 and 0.651 for the two par-

ticipants across coders, indicating moderate reliability. Figure 1 shows example ROIs for two infants and the volume of each ROI

across sessions as a function of age. The anterior hippocampus (volume: M = 1973.1 mm3; SD = 537.5) was defined as the head

of the hippocampus, asmanually traced,49 and the posterior hippocampus (volume:M= 1796.4mm3; SD= 433.7) was the remainder,

including the body and tail. For one session (4.0 month old), the anatomical scan collected in the same session as the functional data

was of insufficient quality for segmentation; we instead used the anatomical scan collected in their next session (at 6.0 months) and

aligned the resulting segmentation to their functional data.

In a follow-up analysis, we defined ROIs for several nodes of the default mode network,27 covering the posterior cingulate cortex,

the right temporoparietal junction, the left temporoparietal junction, and the lateral temporal cortex (Figure S4). These ROIs were

defined using the search term ‘‘default mode’’ in NeuroSynth52 and clustering all contiguous voxels within these prominent regions.

The ROIs were then tested akin to the hippocampus, as described below.

Statistical analysis
For each infant, the volume of left and right hippocampus and MTL cortex ROIs was estimated by counting the number of voxels

traced and multiplying by the volume of each voxel (0.82 mm3). Whole-brain volume was calculated based on the number of voxels

in the brain mask generated by applying Freesurfer (https://surfer.nmr.mgh.harvard.edu) to their anatomical scan.53
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For the main analysis, a general linear model (GLM) was fit to the BOLD activity in each voxel using FEAT in FSL. The GLM con-

tained four regressors: Structured and Random conditions in the first and second half of exposure. Each regressor modeled corre-

sponding task blockswith a boxcar lasting the duration of stimulation convolvedwith a double-gamma hemodynamic response func-

tion. The assignment of blocks to halves was based on the seen-count: blocks with seen-count 1–3 were assigned to the first half and

blocks with seen-count 4–6 were assigned to the second half. The six translation and rotation parameters from motion correction

were included in the GLM as regressors of no interest. This controlled for movement-related changes in the BOLD response.

Excluded TRs were scrubbed by including an additional regressor for each to-be-excluded time-point.54 Contrasts of the resulting

parameter estimates compared Structured greater than Random conditions separately for the first and second half; an interaction

contrast compared the condition differences in the second versus first half. This controlled for generic time-effects, as the interaction

corresponded to the increase for Structured blocks relative to interleaved Random blocks over exposure. The voxelwise z-statistic

volumes for these contrasts were extracted for each session. ROI analyses averaged the z-statistics of all included voxels and exam-

ined the reliability of these averages at the group level. Whole-brain analyses examined the reliability of the z-statistics for each voxel

across sessions.

Statistical analysis was performed on the ROI data using a non-parametric bootstrap resampling approach.55 Namely, for each test

we sampled 24 sessions with replacement 10,000 times, averaging across sessions on each iteration to generate a sampling distri-

bution. For null hypothesis testing, we calculated the p value as the proportion of samples whose mean was in the opposite direction

from the true effect, doubled to make the test two-tailed. To correct for multiple comparisons in whole-brain analyses, we used

threshold-free cluster enhancement through the randomize function in FSL, resulting in voxel clusters p < 0.05 corrected. A bootstrap

resampling procedure was also used to statistically evaluate correlations, sampling bivariate data from 24 sessions with replacement

10,000 times, and calculating the Pearson correlation (or partial correlation) on each iteration. We calculated the p value as the pro-

portion of samples resulting in a correlation with the opposite sign from the true correlation, doubled to make the test two-tailed. To

investigate the interaction between anterior/posterior and left/right hippocampus, we compared the learning-related effect from each

session in the GLM (Structured > Random in second versus first half) according to the interaction contrast: (Right anterior – Left ante-

rior) – (Right posterior – Left posterior). We then applied bootstrap resampling on these values across sessions, as above, to deter-

mine significance.

We tested for differences in looking time during usable blocks using a similar approach. To test for a condition by half interaction,

we compared the proportion of frames participants were coded as looking at the stimuli in each block type according to the contrast:

(Structured second – Random second) – (Structured first – Random first). For the main effect of condition we used the contrast:

(Structured second + Structured first) – (Random second + Random first). For themain effect of half we used the contrast: (Structured

second + Random second) – (Structured first + Random first). For each test, we applied bootstrap resampling on the contrast values

across sessions to determine significance.

To perform the time course analysis (Figure S2), we restricted analysis to pairs of Structured and Random blocks with identical

seen-counts (as opposed to finding the closest match in the main analysis). This allowed us to separately examine the difference

between Structured and Random at each of the 6 ordinal positions. This reduced the number of sessions with a sufficient number

of usable blocks to 22, and the average number of usable blocks per retained session to 9.6 (SD = 1.9; range = 6–12). A GLM

was fit to these data with a separate regressor for each block. The parameter estimates were labeled based on each block’s

seen-count and contrasted across conditions within the same seen-count. The resulting z-statistics were averaged across voxels

within each ROI. The same bootstrap resampling approach with 1,000 iterations was used to assess statistical reliability and calcu-

late p values for each ordinal position. An important feature of this approach is that we were able to estimate the time course even if

individual subjects were missing one or more of the positions. This also takes into account the smaller sample size of sessions with

later ordinal positions, because the obtained sampling distribution is more variable.
e4 Current Biology 31, 3358–3364.e1–e4, August 9, 2021


	Evidence of hippocampal learning in human infants
	Results
	Role of infant hippocampus in statistical learning
	Subdivisions of the hippocampus
	Time course of hippocampal involvement
	Engagement of neocortical systems

	Discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Participants

	Method details
	Data acquisition
	Procedure
	Gaze coding

	Quantification and statistical analysis
	Preprocessing
	Regions of interest
	Statistical analysis




