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P E R S P E C T I V E

Analysis methods in cognitive neuroscience have not always 
matched the richness of fMRI data. Early methods focused on 
estimating neural activity within individual voxels or regions, 
averaged over trials or blocks and modeled separately in each 
participant. This approach mostly neglected the distributed 
nature of neural representations over voxels, the continuous 
dynamics of neural activity during tasks, the statistical benefits 
of performing joint inference over multiple participants and 
the value of using predictive models to constrain analysis. 
Several recent exploratory and theory-driven methods have 
begun to pursue these opportunities. These methods highlight 
the importance of computational techniques in fMRI analysis, 
especially machine learning, algorithmic optimization and 
parallel computing. Adoption of these techniques is enabling 
a new generation of experiments and analyses that could 
transform our understanding of some of the most complex—
and distinctly human—signals in the brain: acts of cognition 
such as thoughts, intentions and memories.

Techniques for human brain imaging grew out of radiology, initially 
involving radioactive tracers (for example, positron-emission tomog-
raphy (PET)), followed by the momentous discovery that MRI could 
measure intrinsic hemodynamic signals linked to neural activity 
(functional MRI or fMRI)1–3. Initial analyses of radiotracer-based 
data quantified absolute activity, taking into account the pharmaco-
dynamics of tracer delivery and clearance, and thus they were complex 
and specialized. The application of subtractive methods—measuring 
relative activity for experimental versus control conditions—made 
analysis more straightforward4. The earliest methods compared the 
measurements at each location (volumetric pixels or ‘voxels’) statisti-
cally using t-tests. This estimated the change in each voxel’s activity 
in response to the experimental manipulation and was used to con-
struct a ‘map’ of such statistics, indicating the distribution of activity  
over the brain5.

This simple approach faced limitations. First, it involved binary 
comparisons, which can be underpowered when identifying  
continuous processes; this was partly addressed by parametric  
designs, which used regression to identify voxels responsive in a 

predicted way6. Second, early approaches were compromised by the 
delayed and protracted course of the hemodynamic response relative 
to neural activity; deconvolution methods were developed to account 
for this7, often by assuming a consistent function across regions and 
individuals. Third, the scale of brain imaging data and the number  
of statistical comparisons created a high risk of false discoveries  
(Type I errors); in response, methods were developed that exploit 
priors about the data (for example, spatial contiguity) when correcting 
for multiple comparisons8,9.

These developments, together with consensus about the most 
important kinds of preprocessing (motion correction, slice-time  
correction, filtering in space and time, and anatomical alignment 
across individuals), led to the creation of standard software toolboxes 
that have been in widespread use for two decades10–13. They have 
had a dramatic and positive impact on fMRI research, standardizing 
practices in the field and facilitating the dissemination of methods. 
With the advent of novel mathematical, statistical and computa-
tional techniques in science at large, and with the dramatic growth of  
technology and computing power, these tools have continued to 
evolve and new tools have emerged. In what follows, we discuss some 
of these newer developments, with a focus on the increasing impor-
tance of computation.

Selective review of advanced fMRI analyses
The central role of computation in neuroscience is evident in the 
approaches to fMRI analysis developed over the last decade. These 
approaches built on techniques and concepts from computer science 
and engineering (for example, machine learning, graph theory, con-
trol theory), as well as from advances in these fields (for example, 
software and hardware optimization and parallelization) that allow 
these and more traditional approaches to run more efficiently and at 
larger scale. This has had both quantitative and qualitative impacts 
on the science that is possible. Here we review three modern analysis 
approaches that have been computationally informed in this way.

Multivariate analysis. As opposed to univariate methods, which 
examine individual voxels or regions, multivoxel pattern analysis 
(MVPA) considers spatial patterns of activity over ensembles of vox-
els to recover what information they represent collectively14,15. These 
methods are effective, although the reasons for this are still debated. On 
one hand, MVPA may be sensitive to information at a subvoxel scale, 
insofar as neuronal populations are distributed heterogeneously over 
voxels such that there is subtle variation in the tuning of individual  
voxels16. On the other hand, the spatial distribution of information 
may reflect a larger-scale map being sampled by voxels, in which case 
MVPA would not provide finer-grained evidence of neural selectivity17.  
A valuable way forward on this issue is to model how neuronal activity 
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manifests at the level of voxels, including examining how voxel size, the 
distribution of cognitive functions and the vasodilatory response impact 
what information is retained in simulated voxel activity patterns18.

The most common form of MVPA uses classifiers from machine 
learning (Fig. 1a), typically linear models such as logistic regres-
sion. The classifier learns a weight for each voxel, and these weights 
together determine the decision boundary between experimental 
conditions. During training, weights are adjusted to maximize how 
well the boundary separates the conditions. To avoid overfitting noise, 
the complexity of the classifier is often constrained, including with 
regularization, which punishes undesirable or unlikely solutions (for 
example, large weights). When tested on new data, the weights are 
used to calculate a weighted sum of voxel activity, which is compared 
against the boundary to guess the class. Classifiers can be applied over 
the whole brain19, in spatial moving windows (‘searchlights’)20 or in 
regions of interest (ROIs).

Classifier-based MVPA has been leveraged to derive trial-by-trial 
measures of internal cognitive states, such as what a participant is 
attending to, thinking about or remembering. Such studies often 
track states that are easy to discriminate in fMRI (for example, face 
and scene processing)21–24. However, some studies have found suc-
cess decoding more fine-grained states, such as which specific item is 
being predicted25, replayed26 or recollected27. One challenge for this 
general approach is that classifiers are opportunistic and exploit any 
discriminative variance, making it especially important to control for 
factors that are confounded with the variables of interest, such as task 
difficulty and reaction time28.

The second major type of MVPA focuses on the similarity of voxel 
patterns (Fig. 1b). Activity patterns are viewed as points in a high-
dimensional voxel space, where the distance between points indicates 
their similarity. Rather than dividing the space with a classifier, it is sum-
marized as a matrix of pairwise distances29. The structure of the matrix 
can reveal what information is encoded in a region by comparing it to 
other similarity matrices, such as from human judgments or computa-
tional models30–32. Similarity-based MVPA has also been used to track 
how learning influences neural patterns33–39. One caveat for this general 
method is that all voxels are weighted equally, unlike in classifier-based 
MVPA, and thus there is a risk of contamination from uninformative 
or noisy features. Another caveat is that pattern similarity can be easily 
confounded, including by univariate activity40 and temporal proxim-
ity41: in such cases, effects on similarity might be interpreted as neural 
patterns converging or diverging in representational space, when in fact 
the underlying structure of the neural patterns has not changed.

Real-time analysis. In a normal workflow, fMRI data are collected, 
transferred from the scanner to a server and analyzed offline over 
weeks, months or years. What could be gained from performing analysis  
during rather than after data collection, obtaining the results in  
seconds? This question has driven interest in real-time fMRI42,43.  
As a research tool, real-time fMRI has opened up intriguing opportu-
nities for training and/or novel experimental designs. In particular, by 
analyzing data on the fly, the results can be used to adjust the ongoing 
experiment (Fig. 2).

The most widespread kind of adjustment involves trying to influence 
the participant via feedback about their brain activity (‘neurofeed-
back’). Inspired by the tradition of using EEG for biofeedback, the goal 
is often to train a participant to increase or decrease activity in a region 
of the brain underlying some cognitive process or disorder. fMRI 
neurofeedback has been used clinically, such as for chronic pain44, 
depression45 and addiction46, as well as to understand basic cognitive 
functions, such as perceptual learning47 and sustained attention48.

It is notable that real-time fMRI and neurofeedback have been 
around since the early days49–51, and although there has been some 
success in the interim44,52, a major resurgence is underway. One pos-
sible reason is that the field has a better understanding of when neu-
rofeedback works, with recent studies of which mental strategies are 
effective53 and which brain regions are more controllable54 versus 
involved in controlling55. The parallel growth of MVPA may have also 
contributed, as it might be easier to control specific contents of mind 
(reflected in distributed representations) than the mean activity level 
of regions that are often linked to multiple cognitive functions42,47. 
Moreover, incorporating feedback into cognitive tasks in a closed-loop 
manner (for example, via stimulus contrast or task difficulty) may feel 
more natural to participants and enable a broader range of real-time 
designs than the scales or gauges used typically48. Nevertheless, fMRI 
neurofeedback will always be limited by the hemodynamic lag, and 
thus feedback may be most informative about cognitive and neural 
processes that drift slowly (for example, attention, motivation and 
learning) and are therefore likely to be in a similar state at the time of 
feedback, despite the delay.

In neurofeedback studies, real-time results are used by the par-
ticipant to change their strategy or behavior. The other major classes 
of real-time fMRI place more emphasis on what the experimenter 
does with the results. In ‘triggering’ designs, the level of activity in 
a brain region is monitored by the experimental control apparatus, 
and trials are initiated when activity is low or high, with predictions 
of different behavioral consequences in these two scenarios56. This 
may enhance causal inference in fMRI, as brain activity serves as an 
independent variable, potentially making it possible to understand 
(with appropriate control regions) whether a given region is sufficient 
for the behavior. In ‘adaptive’ designs, the experimenter determines 
not whether to present a trial—trials occur at regular intervals irre-
spective of brain activity—but rather the content of the next trial (for 
example, the stimulus or task). This has been done with the goal of 
characterizing the tuning properties of the visual system, by adjusting 
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Figure 1 Types of MVPA. (a) Classifier-based MVPA involves learning 
a boundary that discriminates between fMRI patterns associated with 
different cognitive states (for example, attending to faces vs. scenes). 
(b) Similarity-based MVPA involves computing the matrix of pairwise 
distances between fMRI patterns and (optionally) comparing this matrix to 
other similarity matrices (for example, predictions from a cognitive theory 
about conceptual similarity). Adapted with permission from ref. 14,  
J.A. Lewis-Peacock and K.A. Norman, in The Cognitive Neurosciences,  
fifth edition, edited by Michael S. Gazzaniga and George R. Mangun, 
published by The MIT Press.
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stimulus parameters until an area’s response is maximal57, but could 
also be used to examine a wide variety of systems (for example, those 
involved in attention or memory).

Model-based analysis. A key use of computational models in fMRI 
is to define hypothetical signals of interest. Processes close to the 
periphery, such as visual perception, often involve concrete, quanti-
fiable variables that are relatively straightforward to conceptualize, 
manipulate and measure. For example, it seems clearer how to design 
an experiment to test a brain region’s involvement in color vision 
than to test for more abstract constructs such as prediction error or 
confidence. The advantage is not just that color is more tangible but 
also that the psychology and neuroscience of vision have long been 
guided by a firm computational foundation, via formalisms such as 
signal detection theory. Such theories, originally from engineering but 
now deeply ingrained in experimental design and analysis, specify key 
steps in perception and how their operation can be assessed.

In contrast, higher-level aspects of cognition, such as decision, 
valuation, control and social interactions, were relatively slower to 
benefit from computational theories that suggest which quantities 
to manipulate and measure. Models of these processes (for example, 
reinforcement learning, decision theory, Bayesian inference and game 

theory) have seen increasing use as tools to develop precise hypotheses  
about the underlying computations. For instance, reinforcement 
learning specifies how choice outcomes influence future decisions 
and game theory describes how social agents respond to each other s 
actions. These hypotheses can in turn be used to generate predictions 
about neural signals (Fig. 3). Specifically, if a model correctly speci-
fies a computation in the brain, that model can be used to estimate 
time-varying signals for otherwise subjective, hidden variables (for 
example, value expectation, attention signals, accumulated evidence), 
the correlates of which can be sought in the brain58.

Model-based fMRI allows researchers to go beyond localizing 
model variables in the brain. Once their location is known, these 
signals can be read out in later experiments and used to estimate 
parameters independently of behavior (for example, loss aversion59),  
to arbitrate which computational processes are being used by a partic-
ipant via model comparison (for example, in anticipating opponents’ 
behavior60, computing decision variables61 or allocating dimensional 
attention62) and for the kinds of real-time designs discussed above. 
Recent work has pushed the boundary further, particularly by com-
bining model-derived time series with other modes of fMRI analysis, 
including visual category decoding63 and repetition suppression64.

Approaches for scaling up advanced fMRI analyses
The amount of empirical data and the complexity of theoretical mod-
els are both continuing to increase at a rapid pace. A central chal-
lenge for neuroscience is to develop methods that can scale gracefully  
with this growth. Here we discuss scalable approaches that seek to 
address this problem, as well as technological advances that could 
help facilitate solutions.

Finding the signal: methods for identifying meaningful variance. 
fMRI analysis can be hamstrung by the small number of observations 
per participant relative to the complexity of the data. If every voxel 
is considered a dimension of variation, then activity patterns over 
voxels can be described as points in this high-dimensional space. 
Given that the volume of this space expands dramatically with the 
number of dimensions (voxels), a smaller number of observations 
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experimental code before the next acquisition is completed. The neural 
results can be incorporated in three general ways. First, they can be 
displayed directly to participants using a scale, gauge or an aspect of 
the stimulus itself, with the idea that this neurofeedback will allow 
participants to refine their strategies and learn to control which brain 
regions or representations are active. Second, the results can be used by 
the experimenter to trigger the onset of a trial, to test hypotheses about the 
contribution of a region’s activity (or inactivity) to a cognitive process or 
behavior of interest. Third, the results can be used by the experimenter to 
adjust experimental parameters, either to hone in on the selectivity of brain 
regions or to repeat trials or conditions for which there is uncertainty about 
the neural response. Regardless of the approach, the end result is that 
brain activity at one timestep can influence the participant’s experience at 
the next timestep, which in turn influences their brain activity, then their 
experience and so on. If the brain and experiment are tightly entrained,  
the design can be referred to as ‘closed-loop’. TR refers to repetition  
time, the start of the next volume acquisition. 
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Figure 3 Schematic of model-based fMRI. A computational model  
(top; error-driven reward-learning model) can be used to generate 
candidate time series of internal variables (values, V, in blue and 
prediction errors, , in red). Following smoothing to account for the 
hemodynamic lag (middle), these variables can be used as regressors 
to seek correlated BOLD activity in the brain (bottom), producing 
regions that can be considered candidates for performing or tracking the 
corresponding computations in the model. , learning rate parameter.
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(volumes) than voxels means that the points corresponding to the 
activity patterns for these observations will fill the space very sparsely. 
This makes statistical analysis difficult and underpowered, for exam-
ple leading to poorly placed decision boundaries in MVPA, which in 
turn impairs classification performance. This ‘curse of dimensionality’ 
is only exacerbated by the fact that blood oxygenation level-dependent  
(BOLD) activity is very noisy. Given these challenges, the models fit-
ted to fMRI data need constraints to help them to find the ‘needles’  
of signal embedded in the much larger haystack of noise. Here  
we describe techniques that, in concert, may improve our ability to 
identify meaningful cognitive signals.

One such technique is shared response modeling (SRM65; see also 
hyperalignment66), which projects fMRI responses from each partici-
pant into a low-dimensional space that captures temporal variance 
shared across participants (Box 1; Fig. 4–5). If participants are given 
the same stimulus or task sequence (for example, a movie), which 
leads their brains through a series of cognitive states (for example, 
visual, auditory, semantic), then identifying shared variance has the 
effect of highlighting variance related to these states. An added benefit  
is that SRM helps address the data starvation problem above: because 
the SRM space is by definition shared across individuals, data from 
multiple participants can be combined prior to MVPA or other analy-
ses. Cross-participant decoding is possible without SRM67–70 but may 
be limited to cognitive states whose neural representations are coarse 
and thus tolerant of misalignment. Indeed, SRM improves MVPA pre-
cisely by aligning fine-grained spatial patterns within local regions71. 
Moreover, beyond improving alignment and increasing the sensitivity 
of other analyses, the output of SRM itself can be informative. For 
example, it has been used to estimate the dimensionality with which 
the posterior medial cortex represents movies during perception and 
memory recall72.

The flip side of focusing on shared responses is to focus on responses 
that are idiosyncratic to individuals. Although these responses are 
excluded in SRM, they are not necessarily noise and may in fact be 
highly reliable within participants. Indeed, SRM can be used to iso-
late participant-unique responses by examining the residuals after 
removing shared group responses, or it can be applied hierarchically 
to the residuals to identify subgroups65. More generally, there is a 
growing trend toward investigating individual differences as another 
source of meaningful variance in fMRI73. Recognizing that signal 
exists beyond the average or shared response of a group, such studies 
exploit idiosyncratic but stable responses to account for previously 
unexplained variance in brain function, behavioral performance and 
clinical measures70,74.

A second promising technique is to impose spatial priors on the 
brain patterns extracted by fMRI, based on knowledge of how neural 
representations relevant to cognitive function are organized. One sim-
ple but powerful idea is that such representations are realized sparsely: 
that is, only a subset of voxels is modulated by a given process of 
interest. However, sparsity alone is insufficient, as cognitively relevant 
patterns also tend to be spatially structured, such that nearby voxels 
coactivate. Bayesian hierarchical models are particularly effective 
at implementing such simultaneously sparse and structured priors. 
These models support flexible specification of the spatial prior and 
share statistical strength across separate observations with the same 
latent structure, such as data from multiple participants.

Topographic factor analysis (TFA) is one such Bayesian approach 
that exploits structured sparsity75: fMRI images are redescribed in 
terms of a small (sparse) number of localized sources that have a pre-
specified functional form (structure), such as a radial basis function. 
Given a set of fMRI images, TFA infers the number, locations and sizes 

of sources that best describe the images, as well as source weights that 
specify how active each source is in each image. Because the number 
of sources is typically substantially smaller than the number of voxels 
in an fMRI dataset, computations based on TFA  sources can be orders 
of magnitude more efficient than computations based on voxels. Of 
course, spatial priors and dimensionality reduction both run the risk 
of excluding signals of interest and thus need to be used in conjunc-
tion with more exploratory methods.

A third way to extract signal is to compute patterns of covariance 
between voxels or regions. Such ‘functional connectivity’ can carry 
information about the interactions between regions not evident in 
localized activity76. This may be especially true for processes such as 
attention, in which certain brain regions control or influence other 
regions. Indeed, functional connectivity has helped reveal mecha-
nisms for visual selection77, markers of sustained attention ability74 
and networks that support cognitive tasks more generally78,79.

The challenge is that voxel covariance patterns are several orders of 
magnitude larger than the raw data (~1010 voxel pairs), increasing the 
size of the haystack that must be searched for the signal needle. One effec-
tive solution has been to reduce the scale of the problem by parcellating 
the brain into a smaller set of larger regions or clusters before analysis78. 
However, this requires assumptions about the right functional ‘units’ of 
neural processing, and such decisions can impact results80. The tech-
niques described above can also help: focusing on variance shared across 
participants can clarify connectivity results (Box 2; Fig. 6). Finally, it is 
possible to analyze covariance patterns at full voxel scale, but this requires 
computational optimization and parallelization. This is illustrated by full 
correlation matrix analysis (FCMA), which uses advanced algorithms to 
compute the pairwise correlation of every voxel with every other voxel 
over multiple time windows and to train a classifier on these correlations 
for decoding held-out time windows, all while intelligently splitting 
these computations over threads, cores and nodes on high-performance  
computing systems81. Some drawbacks of FCMA include its need for 
substantial computing power and the difficulty in interpreting and visu-
alizing the results (classifier weights on voxel pairs).

Lastly, there may be important cognitive state information in 
fMRI that does not manifest in voxel activity or pairwise correla-
tions between voxels but rather in higher-order network properties, 
irrespective of their particular spatial coordinates (for example, does 
a set of voxels form a ‘loop’ or circuit?). Such relationships can be 
characterized and quantified with graph theory and topological data 
analysis, which are beginning to be applied to fMRI data82,83.

Knowing where to start: models for guiding and constraining 
analysis. The new methods described thus far seek to identify and  
amplify the signal in fMRI data by exploiting advances in statistical 
and computational methods, disciplined by our growing understand-
ing of generic principles about how information is represented (for 
example, sparsely) and processed (for example, interactively) in the 
brain. On their own, however, these methods are largely exploratory. 
Although this has the advantage of being unbiased, it fails to exploit a 
deepening understanding of the functions carried out by the brain.

As in all forms of analysis, useful prior information can greatly 
reduce the search space and improve the likelihood of detecting a 
signal of interest. Priors can come not only from general principles of 
neural organization (as above) but also from more specific informa-
tion about the structure of particular processes at play. Such structure 
may be imposed by the stimuli: for example, computational analyses 
of patterns of word co-occurrence from large online databases have 
been used to constrain analysis of fMRI data acquired while those 
words are being perceived84. Structure can also arise from hypotheses  
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Box 1 Shared response model (SRM) 

After standard alignment, fMRI data can be aggregated at the group level by averaging the values at each voxel across participants. Although this reduces inter-
subject noise, variation in the anatomical locations of functional signals across participants blurs estimates of their shared responses. SRM offers an alternative 
approach by jointly factoring each participant’s data into a shared set of feature time series and subject-specific topographies for each feature (Fig. 4).
 The simplest use of SRM is for extracting a shared response across an anatomical ROI. Used this way, SRM and related methods can yield significant gains in 
sensitivity for group-level inference65,66. For example, which short segment of a movie is being watched can be classified with many times greater accuracy from 
fMRI data after functional versus anatomical alignment65,71. Moreover, text annotations of movie segments based on fMRI are consistently better, across ROIs  
and analysis parameters, after SRM98. Applying SRM to a large swath of the brain means that all voxels within the region contribute to the final derived metric. 
This can conflict with the goal of associating spatially local activity with specific cognitive functions. To address such issues, SRM can be applied in small  
overlapping searchlights to obtain localized metrics of shared information71,99.
 SRM is computed using a subset of the available fMRI data, with the number of features, k, determined using cross-validation. Naturalistic stimuli such as 
movies and stories are often used to generate such training data, though any study design in which participants perform the same sequence of trials—or for  
which a common sequence can be spliced together from the same set of trials—could be used (for example, a battery of cognitive tasks). SRM highlights the 
sources of variance elicited by the stimuli or trials that are shared across participants in the training data. Held-out test data (including from new participants) 
are then projected into the shared response space for further analysis. Such test data could be of the same type as the training data, for example, allowing for 
decoding of new movie segments (Fig. 5). Alternatively, the test data could be from controlled laboratory experiments—there is no requirement for a common trial 
sequence or set, unlike for the training data—with SRM simply replacing standard alignment in the preprocessing pipeline. As a rule of thumb, SRM will improve 
sensitivity for detecting a cognitive process of interest in the test data if the training stimuli or trials strongly and variably engage that process in a way that is  
reliable across participants. One limitation when using SRM for preprocessing is that additional data must be collected for training, reducing the amount of  
data (and potentially statistical power) related to the principal question of the study.

Figure 4 Process for SRM. fMRI data are collected from each of m participants experiencing the same stimulus and then organized into a matrix X 
(voxels by time). Each matrix X is then factored using a probabilistic latent-factor model into the product of a subject-specific matrix W of k brain 
maps (an orthogonal basis) and a shared temporal response matrix S of size k by time. That is, for each participant: X = W S + R, where X, W, and 
the residuals, R (not shown), are subject-specific, and S is shared across participants. 

Figure 5 Comparison of SRM to other multisubject approaches. Three fMRI datasets were collected as participants viewed and/or listened to the same 
stimulus. The data were then anatomically aligned to either Talairach (TAL) or Montreal Neurological Institute (MNI) space, giving a common coordinate 
system for all participants. In these examples, analyses were restricted to the time series of BOLD activity across voxels within a specific ROI.  
The strength of shared cognitive states during the stimulus was evaluated by attempting to identify a short movie segment in a held-out participant’s 
test data, based on the test data of the other participants. This was done before (TAL, MNI) or after applying an across-participant factor model: 
principal component analysis (PCA), independent component analysis (ICA), hyperalignment (HA) or SRM. For the methods with dimensionality 
reduction (PCA, ICA, SRM), k = 50 features were used. Assuming the movie segments are independent, chance accuracy is 0.001. Error bars reflect 
s.e.m. Adapted with permission from ref. 65, Curran Associates, Inc. 
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Box 2 Intersubject functional connectivity 
One of the most widespread types of fMRI analysis is the investigation of functional connectivity (FC), the temporal covariance of BOLD activity across distinct 
brain regions and how it changes as a function of external input and internal goals76,78,79. FC is most commonly computed between a single seed ROI and the 
rest of that person’s brain (Fig. 6a), but it can also capture interactions across all possible pairs of voxels or regions81.
 The term ‘functional connectivity’ implies that the covariance between regions is driven by their direct interaction. However, this is not always the case,  
as covariance can be indirectly caused by physiological factors (for example, breathing or heartbeat) that jointly influence regions or by the synchronization of 
regions to the same external stimulus. Physiological confounds can be controlled by comparing covariance across two or more experimental conditions, as long as 
the physiological changes are uncorrelated with the design. Stimulus confounds can be addressed in various ways, including by regressing out stimulus-evoked 
responses and examining ‘background connectivity’ in the residuals, providing a purer measure of intrinsic interactions77.
 Here, we focus on the complementary problem of isolating stimulus-driven covariance between regions. A new variant of FC called intersubject functional 
correlation (ISFC)96 achieves this goal by calculating regional covariance across participants (for example, correlating region A in participant 1 with region B in 
participant 2; Fig. 6b). Given that intrinsic neural responses cannot systematically align across participants’ brains, the covariance pattern produced by ISFC  
during rest (when no stimulus is present) should be low and statistically insignificant. However, when neural responses lock to a stimulus, ISFC can isolate  
covariance that is shared across participants.
 ISFC is particularly effective at filtering out spontaneous neural responses, which contribute strongly to FC, while improving sensitivity to stimulus-locked  
processes. To see this, consider four conditions that were scanned with fMRI: listening to a 7-min story, listening to versions of the story scrambled at the  
sentence level and at the word level, and resting with no stimulus. FC computed within each participant and then averaged across a group of 18 participants  
was stable across the four conditions despite large differences in stimulus properties (Fig. 6c), suggesting that regional covariance was dominated by intrinsic 
interactions and was relatively insensitive to dynamic stimulus-induced variance.
 These results can be contrasted with ISFC results for the same data, which showed strong differences across conditions (Fig. 6d): no ISFC at rest; for scrambled 
words, ISFC was observed only in auditory cortex and early language areas that process words; for scrambled sentences, ISFC extended to broader language 
networks, encompassing Wernicke’s and Broca’s areas; and for the intact story, ISFC encompassed the full default-mode network. Moreover, ISFC revealed reliable 
changes in the configuration of the covariance patterns over short time windows as the story unfolded96. This ability to track changes in regional synchronization 
during the processing of real-life information opens up new avenues for linking the dynamics of brain networks to stimulus features and human behavior.
 As with SRM, ISFC discounts variance that is idiosyncratic to individuals. Thus, it should be used in concert with FC, especially to capture meaningful noise 
correlations77 and stable individual differences70,74.
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Figure 6 Functional interactions within and between participants. (a) Schematic of functional connectivity (FC) analysis, performed within a 
participant’s brain between a single seed ROI (in yellow) and the rest of the brain or between all possible pairs of voxels (as in FCMA). (b) Schematic of 
intersubject functional correlation (ISFC) analysis, performed between participants’ brains from a single seed ROI to the rest of the brain or between  
all possible pairs of voxels. (c) Voxel-based FC covariance matrices reveal similar network organization across conditions. The four experimental 
conditions are: (i) intact story, (ii) sentence scramble, (iii) word scramble and (iv) resting state. (d) Voxel-based ISFC covariance matrices reveal 
stimulus-dependent interactions within networks. The covariance matrices are organized into five networks by k-means clustering: default-mode 
network, split into two subnetworks (DMNA and DMNB); dorsal language network (dLAN); ventral language network (vLAN); and auditory cortex (AUD). 
Adapted with permission from ref. 96, Nature Partner Journals.
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about underlying cognitive mechanisms, particularly when the mech-
anisms can be cast in quantitative form. However, most efforts at  
such model-based analysis (as discussed earlier) have used low-
dimensional models with simple, usually linear functional forms. 
Though a valuable start, such models fall short of capturing the  
high-dimensional, nonlinear nature of processing in the brain.

More sophisticated models that confront such complexity have 
a long tradition in cognitive psychology85,86. With computational 
advances and larger training sets, this approach has seen a dramatic 
resurgence over the past few years, most evidently in the rise of ‘deep 
learning’ models of perception87. The neuroscience community  
is beginning to harness the power of such models by integrating  
them into the analysis of neural data88. One approach is to generate 
predictions about the similarity structure of patterns of fMRI activity 
from the similarity structure of simulated neural activity patterns in 
the model30. With this approach, hypotheses can be generated about 

circuits or stages of processing by mapping different layers of the 
model to different brain areas89,90.

Successes thus far have mostly come from fitting deep learning 
models to the visual system (cf. ref. 91). Whether biologically inspired 
models of higher-level cognitive processes provide similarly powerful 
insights about other brain systems remains an open question. One 
difficulty is that the ‘ground truth’ for such processes is hard to define: 
perceptual models can be trained on millions of photographs with 
unambiguous labels about what objects are contained, but there is no 
similar corpus of memories or thoughts and no accepted vocabulary 
or basis set for describing their contents. Even if such a corpus existed, 
the point-spread function of the hemodynamic response in space and 
time, as well as our still-imperfect neurophysiological understanding 
of BOLD activity, complicate the translation of simulated activity in 
model units to predicted fMRI activity patterns. Indeed, the scale and 
manner with which neuronal populations are sampled and locally 

Box 3 Real-time cloud software-as-a-service (SaaS) 
The computational demands of fMRI analysis are growing as datasets get larger and algorithms become more sophisticated. These demands have traditionally 
required local high-performance computing clusters. Although effective, clusters cost millions of dollars, take up considerable space and require numerous  
support staff, making them infeasible for many fMRI researchers and institutions. Moreover, these systems cannot be flexibly expanded as needs grow rapidly. 
Cloud computing represents a different kind of solution, providing scalable resources in an affordable and accessible way. Such resources can be harnessed  
using SaaS, allowing researchers to perform analyses on demand from anywhere in the world without developing and deploying software or managing servers.  
SaaS has previously been used in neuroscience100 and has been adopted by several other scientific domains.
 Real-time fMRI is a good use case for SaaS because of the need for fast, scalable and resilient computing. Each acquired brain volume would be sent to the 
cloud for analysis and the result returned before the next volume is finished being collected, for neurofeedback or experiment adjustment. Beyond meeting these 
tight time deadlines, the goal of real-time cloud analysis is to enable online use of the full breadth of analyses that can be performed offline. As a test case that is 
particularly intensive computationally, we have been developing a real-time cloud version of FCMA97. The computations related to correlation calculation, feature 
selection and classifier training are especially demanding of memory and compute cycles. An even more demanding factor in a real-time application is that these 
steps need to be performed multiple times, incrementally as each brain volume is acquired, rather than once at the end from batch data.
 In implementing real-time FCMA, we designed a system architecture that can, in principle, be used to perform other intensive fMRI analyses in real-time  
(Fig. 7). The scanner control room is equipped with a simple workstation that collects and transmits reconstructed brain volumes as they come off the scanner. 
It uses a hypertext transfer protocol (HTTP) interface to transmit and receive 
information to and from the cloud. The cloud hosts a representational state 
transfer (REST) frontend server that communicates with a distributed backend 
(orchestrated by a master process), which provides a flexible set of processes 
that compose the stages of the pipeline. Some of the stages involve distributed 
parallel processing across a set of machines for large computations. Simpler 
stages, like spatial filtering and classifier scoring, only require a single machine. 
The system is able to provide multiple services, allowing real-time fMRI experi-
ments from different neuroimaging centers to run simultaneously. The system 
is also designed to be fault tolerant and robust to machine failures, ensuring its 
reliability for scientific research. Such cloud services eventually stand to benefit 
all fMRI analyses, improving standardization and replicability—only a single 
instance of the backend hardware and software is needed—and making large-
scale analyses that once required dedicated systems tractable and accessible to 
all users.
 Real-time fMRI is typically performed on local workstations, even for ad-
vanced analyses47,48, so it is important to consider what benefits SaaS confers  
beyond enabling particularly large-scale approaches like FCMA. Some practical 
benefits are mentioned above—increasing the accessibility of real-time fMRI to 
sites without powerful local workstations, as well as facilitating software config-
uration, maintenance and upgrades—but there are more general computational 
advantages as well, related to parallelization. In particular, SaaS allows for the 
flexible allocation of machines to process the same data in multiple ways.  
For example, if neurofeedback is to be provided from MVPA, multiple classifiers 
could be trained and tested on different brain regions or searchlights, and the 
best-performing classifier could then be used to provide high-fidelity feedback. 
Likewise, the space of analysis parameters (for example, the penalty in  
regularized logistic regression) could be swept in real-time to optimize  
performance. A potential limitation of SaaS is that it involves a central  
hardware resource that must be supported by fees or major capital investment. 
Another important consideration is that scanner images can contain identifiable 
information about human participants (for example, header files, face  
reconstructions), and thus sending them offsite to locations not explicitly  
covered by ethics approvals could be problematic. Some cloud computing  
providers offer HIPAA-compliant servers, which would help alleviate this  
concern, and additionally, the images could be scrubbed of identifiable  
information before transmission to the server.

Figure 7 Real-time cloud system architecture. Scanners send brain volumes 
to the system via the Internet and the system returns neurofeedback.  
Using a series of servers, each scanner gets its own instance of the analysis 
pipeline (here, FCMA), providing neurofeedback in real-time and keeping  
the classifier updated by performing feature selection and classifier training 
iteratively. Adapted with permission from ref. 97, IEEE. 
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averaged in fMRI voxels can have a big impact on the information 
carried by voxel activity patterns, although repeated random sampling 
provides some stability18. Continued advances in mathematical and 
computational methods may help address these problems and license 
the use of more detailed and realistic models of neural function in 
the analysis of fMRI data.

Getting the job done: scalable computing for efficient analysis. 
We have made the case that future analyses need to explore data and 
exploit models at full scale but have not yet addressed the practical 
issue of whether this is tractable. The methods above can be extremely 
computationally demanding and data intensive, with the number of 
operations and the memory needed for intermediate products scal-
ing exponentially with the size of the dataset, or worse. For example, 
SRM requires a matrix inversion equal to the total number of voxels 
pooled across all participants, and FCMA trains a separate classifier 
of seed-based whole-brain connectivity for every voxel during feature 
selection. High-resolution and multiband imaging, combined with 
an increased focus on jointly considering all participants, worsen the 
problem. To complete the analysis of a single dataset may require years 
with a standard implementation, even when deployed on a modern 
compute server. This would, of course, put real-time applications out 
of reach, as well as hamper the rate of scientific discovery and progress 
more generally.

These computational bottlenecks have attracted the interest of com-
puter scientists, not only from machine learning but also from algo-
rithms and systems research92,93. The complexity of algorithms can be 
reduced with efficient mathematical transformations and numerical 
methods. Algorithms can be further optimized by one to two orders 
of magnitude by taking advantage of modern hardware like multi-
core, manycore and GPU boards; using cache and memory hierarchies 
more intelligently; improving data staging between processing steps; 
and exploiting instruction-level parallelism such as single instruc-
tion, multiple data (SIMD) and vector floating-point units. Analyses 
can also be parallelized over networks of computers94, at the levels 
of both data and models. In data parallelism, each processor keeps a 
full replica of the model to train on a portion of the data. In model 
parallelism, each processor receives a portion of the model to train 
on all data, sharing parameters to aid convergence. Network paral-
lelization must be designed for minimal and efficient communication, 
such as with the message passing interface (MPI) protocol. Together, 
these measures will permit neuroscientists to take full advantage of 
high-performance computing resources, with the potential of a near-
linear speedup per machine on the network. However, this requires 
that neuroscientists gain the computational expertise to implement 
these approaches and/or develop close collaborations with compu-
tational scientists.

In addition to scaling up neuroimaging analyses with computa-
tional techniques, such analyses will benefit by being scaled up in a 
different way, from the small number of laboratories and institutions 
with the expertise and equipment to create them to the much broader 
community of researchers who use fMRI. This requires developing 
code in a way that can be shared and run by others, as well as stand-
ardizing file types and a lexicon for annotating experimental details, 
so that new data can be analyzed using the code95. To facilitate replica-
tions, meta-analyses, classroom instruction and personnel training, 
specific instantiations of the code and parameters should be included 
in publications, along with the corresponding raw data. Finally, even 
if code and/or data are shared, many of the future analyses discussed 
here run efficiently only on large clusters, which are available to just  
a subset of the user base. This could be ameliorated by converting  

analyses to a software-as-a-service (SaaS) or ‘cloud’ ecosystem  
(Box 3; Fig. 7), an approach that has revolutionized many fields and 
industries. Such developments will again require close collaborations 
between neuroscientists and computational scientists.

CONCLUSIONS
It is sometimes easy to forget that fMRI has been around for little more 
than two decades. In this article, we summarized analysis approaches 
that are helping lead the way into the third decade. Even if our per-
spective on which directions seem most promising turns out to not 
be accurate, the underlying theme seems likely to prove correct: fMRI 
analysis will benefit from close alignment with neighboring fields, such 
as cognitive science, computer science, engineering, statistics and math-
ematics. As these fields (and neuroscience) become increasingly repre-
sented in the technology industry, new opportunities for funding and 
partnerships will also arise, along with new applications of the research. 
In parallel, a growing focus on reproducibility, public databases, code 
sharing and citizen science promises new, affordable and accessible 
sources of data and new avenues for discovery. Even if the research-
ers who collected a dataset find their needle in the haystack, there are 
surely more needles hidden in it, especially when combined with other 
datasets and analyzed with powerful techniques being developed.
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