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Theories of memory consolidation suggest that initially rich, vivid memories become more gist-like
over time. However, it is unclear whether gist-like representations reflect a loss of detail through degra-
dation or the blending of experiences into statistical averages, and whether the strength of these repre-
sentations increases, decreases, or remains stable over time. We report three behavioral experiments that
address these questions by examining distributional learning during spatial navigation. In Experiment 1,
human subjects navigated a virtual maze to find hidden objects with locations varying according to spa-
tial distributions. After 15 minutes, 1 day, 7 days, or 28 days, we tested their navigation performance
and explicit memory. In Experiment 2, we created spatial distributions with no object at their mean loca-
tions, thereby disentangling learned object exemplars from statistical averages. In Experiment 3, we cre-
ated only a single, bimodal distribution to avoid possible confusion between distributions and
administered tests after 15 minutes or 28 days. Across all experiments, and for both navigation and
explicit tests, representations of the spatial distributions were present soon after exposure, but then
receded over time. These findings suggest gist-like representations do not improve over time, helping to
clarify the temporal dynamics of consolidation in human learning and memory.
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A central question of memory research is how to resolve the
push-and-pull between storing unique yet related episodes (epi-
sodic memory) and extracting commonalities across them (gist
extraction/statistical learning). For example, whereas in some
cases it is important to remember episodes (e.g., where you parked

your bike at work today), in other cases it can be helpful to rely on
generalized experiences (e.g., where you usually park your bike).

An influential computational model of learning proposed that epi-
sodic memory and statistical learning can occur simultaneously
because of complementary learning systems in the brain (McClelland
et al., 1995). Episodic memories can be formed quickly by medial
temporal lobe structures like the hippocampus, whereas statistical
learning occurs slowly via accumulated experiences in the neocortex.
Repeated interplay between these structures allows for this slow
extraction to occur (McClelland et al., 1995). The complementary
learning systems framework accords well with theories of memory
consolidation, which explain how initially hippocampal-dependent
episodic memory traces can be transformed (in at least some form)
over time and/or with repeated experience to the neocortex (Nadel &
Moscovitch, 1997; Squire et al., 2015; Winocur et al., 2010).

This transformation process aligns with how memories lose detail
and specificity over time (Rosenbaum et al., 2000; Wiltgen & Silva,
2007; Winocur et al., 2007). However, according to these models,
aspects common across multiple experiences should be better main-
tained over time because they will be repeatedly reactivated by these
later experiences and/or embedded within existing knowledge struc-
tures. This idea has garnered support from multiple research domains.
The central aspects of stories are less likely to be forgotten than periph-
eral information (Bartlett, 1932). Lure words that are falsely remem-
bered as a result of being semantically related to studied words get
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forgotten more slowly over time than words that were actually
studied (Thapar & McDermott, 2001). Additionally, category
prototypes learned from viewing similar exemplar stimuli are
forgotten more slowly over time than exemplars (Posner &
Keele, 1970; Strange et al., 1970).
Although gist extraction has been observed across a variety of

paradigms and stimuli, the time course over which such representa-
tions emerge is less clear. In category learning and false memory
paradigms, for example, gist extraction can be detected within
minutes of learning (Gallo, 2010; Podell, 1958; Posner & Keele,
1970; Read, 1996; Roediger & McDermott, 1995), suggesting that
it occurs either during learning or very quickly thereafter. Relatedly,
statistical learning—often thought of as a slow process in theories
of memory—can occur very rapidly in minutes (Fiser & Aslin,
2001; Saffran et al., 1996; Turk-Browne et al., 2005), even over
multiple interleaved sets of regularities (Gekas et al., 2013). This is
consistent with evidence that statistical learning may depend upon
the hippocampus (Schapiro et al., 2014; Schapiro et al., 2012; Scha-
piro et al., 2017), the fast-learning brain system otherwise linked to
episodic memory. Relatedly, these literatures support the key ideas
of fuzzy trace theory, which suggests that both detailed, episodic
and less detailed, gist-like traces are created in parallel during learn-
ing, and gist-like traces fade more slowly in memory (Reyna &
Brainerd, 1995).
Despite findings in the studies above that these representations

emerge rapidly before fading, a recent rodent study showed that

gist-like representations improve with longer delays (Richards et
al., 2014). Over a series of days, rodents searched for hidden plat-
forms in a circular maze with locations that varied according to an
underlying spatial distribution. After 28 days but not 1 day, pat-
terns of rodent search paths were better predicted by the distribu-
tion than by individual platforms. These results suggest that as
memory for specific details decays with time, gist may be increas-
ingly extracted in the absence of continued experience.

We asked how quickly gist extraction occurs and whether this
knowledge then increases, decreases, or remains steady over time.
In the first two experiments, subjects (Experiment 1: N = 136;
Experiment 2: N = 175) searched a virtual arena for two types of
hidden objects: coins and diamonds (see Figure 1A). In Experi-
ment 1, the locations of each type of object varied according to a
spatial distribution over the arena. In Experiment 2, each of the
two distributions was circular with no object at its mean location,
allowing memory for the learned locations to be distinguished
from a more gist-like representation of the mean. After this initial
learning phase in both experiments, subjects returned for a test ses-
sion either 15 minutes, 1 day, 7 days, or 28 days later. In this ses-
sion, we compared trajectories of virtual navigation to the learned
locations and distributions to assess spatial memory. After these
trials, we also administered a paper test, in which subjects explic-
itly marked each object location they had encountered. In a third
experiment (N = 193), we used only a single distribution (coins)
and tested subjects either 15 minutes or 28 days later. Contrary to

Figure 1
Experiment 1 Design

Note. (A, top) Bird’s-eye view schematic of the circular environment with object distributions. Subjects were encouraged to
orient to the environment using the presence of a blue plus sign on the north wall and a blue south wall. Cyan circles denote
coin locations, whereas red diamonds denote diamond locations. Black plus signs denote the means of each distribution. (A,
bottom) For each object type, 2D heat maps were created to construct a distributional pattern against which navigation trajec-
tories and paper test responses were measured using KL divergence. (B) Time course of a single trial. Subjects were shown a
fixation cross followed by the type of object for which they should search before being placed along the wall of the environ-
ment. The lower right-most panel shows a screenshot from the beginning of a sample trial. (C) Overall study procedure.
During learning, subjects searched for each object 15 times (30 total) in a random order (in this example, coins are in cyan,
diamonds in red). After retention intervals of 15 min, 1 day, 7 days, or 28 days, subjects returned to take a navigation test
(three 1-min trials for each object) and an explicit paper test. See the online article for the color version of this figure.
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our initial predictions based on rodent findings in Richards et al.
(2014), in all three experiments, gist-based representations were
learned rapidly and decreased over time.

Experiment 1

We predicted that there would be a dissociation between object
exemplar memory (as assessed by the percent of the trajectory
spent in the learned locations) and gist-like representations (as
assessed by Kullback-Leibler [KL] divergence between a distribu-
tion and the search trajectory). In line with the well-documented
loss of detail in memory over time, we predicted that memory for
specific exemplars would decrease monotonically over time.
Inspired by findings from Richards et al. (2014), we predicted that
gist extraction would be enhanced by consolidation (i.e., the inter-
vals longer than 15 mins) but also that these representations would
fade over time (i.e., by 28 days later; Posner & Keele, 1968; Tha-
par & McDermott, 2001). Based on these somewhat conflicting
findings, we predicted greater distribution-based navigation at the
intermediate retention interval conditions (namely, the one-day
and seven-day conditions), relative to the 15-min and 28-day con-
ditions, and greater distribution-based navigation for the 28-day
than the 15-min condition. We had the same predictions for the pa-
per test.

Method

Subjects

All subjects (N = 143; 56 male, 87 female) were undergraduate
students with normal or corrected-to-normal vision. Of these sub-
jects, seven (five male, two female) were excluded for not finish-
ing the initial learning phase within the allotted 30-min period;
those excluded did not differ significantly in age, F(1, 141) = .077,
p = .782, or gender, v2(1, N = 143) = 3.22, p = .073, from those
included in the final analysis. Each subject was randomly assigned
to the 15-min, 1-day, 7-day, or 28-day condition, which repre-
sented the delay between sessions. At the time subjects signed up
for the first session, they did not know when their second session
would take place; this information was conveyed to them after-
ward. If subjects had a scheduling conflict, they were given the op-
portunity to return for their second session at a different time than
previously assigned. We aimed for 30 subjects/condition and
stopped new signups after that number had been reached. All pro-
cedures were in accordance with the California Polytechnic State
University, San Luis Obispo Institutional Review Board. Subjects
provided informed consent and earned research credits for their in-
troductory psychology course in exchange for participation.

Stimuli

We used a three-dimensional, circular virtual environment similar to
the Morris water maze (Morris, 1984) that was shared from another
lab group and used in previous publications (Graves et al., 2020;
Woolley et al., 2013; Woolley et al., 2010). The environment was con-
structed in Blender (www.blender.org) and rendered in MATLAB
(ver. 2017a; MathWorks). The environment was altered by adding a
grassy texture to the floor. To allow subjects to orient themselves
within the environment, the north wall was gray with a blue plus sign,
the south wall was blue, and the east and west walls were gray. The

radius of the virtual environment was 7.85 arbitrary units (AU), and
each object had a radius of 1.5 AU. Following Richards et al. (2014),
the locations were determined by sampling the angle from a von Mises
distribution (p = 135°, j = 3) and the radius from center from a normal
distribution (M = 3.4 AU, SD = 1.13 AU). To control the complexity
of learning the two distributions, the coin and diamond distributions
were identical except rotated clockwise 140°. We chose 140° rather
than a more regular interval (e.g., 90 or 180) to reduce the likelihood
that subjects would be able to learn one distribution with respect to the
other using a simple heuristic (e.g., “diamonds = coinsþ 180°”) rather
than via experience.

Design and Procedure

Learning Phase. Subjects received instructions that they
would be searching within the virtual world (shown from an allo-
centric viewpoint) for two different types of objects (coins and dia-
monds). They were told to use the ‘I’ key to move forward and the
‘J’ and ‘K’ keys to move left and right, respectively. They could
only move forward, while rotations altered the direction of these
forward movements. Subjects were then given a 30-s opportunity
to navigate around the virtual world to ensure that they understood
how to move around. During the learning phase, subjects engaged
in 30 trials (15 coins and 15 diamonds in a randomized order; see
Figure 1C). On each trial, they saw a 1.5-s fixation cross, a 2.0-s
prompt indicating whether they should look for coins or diamonds,
and then, starting from a random place along the edge of the envi-
ronment, they were given an unlimited amount of time to find the
object (see Figure 1B). Upon finding the object, the walls of
the environment turned green for 3 s and the program advanced to
the next trial. No actual objects were shown within the environ-
ment; subjects navigated to locations simply by following the
word prompts. This continued until subjects either found all 30
objects or 30 minutes had elapsed. See Figure S1 in the online sup-
plemental materials for learning-related measures.

Test Phase. Subjects returned to the laboratory after their
assigned delay for a test in which they were told to navigate to the
locations of the objects that they previously found in the learning
phase. Retention tests occurred 15 min, 1 day, 7 days, or 28 days
later; we included 15 minutes as the earliest delay to prevent the
possibility that information could remain in working memory.
There were three separate test trials for each object type (in a
randomized order), each of which lasted 1 minute. Unbeknownst
to the subjects, there were no objects hidden. After the navigation
test, they were asked to indicate on separate circular grids from an
allocentric viewpoint (Figure 1C) their explicit memory of the
coin and diamond locations. Subjects had seen such an allocentric
viewpoint once before during the initial instructions. Subjects
were asked to indicate the same number of locations as they had
learned for each object type (15) and were encouraged to guess if
they could not remember. Finally, they completed a posttest ques-
tionnaire with questions about their strategy for finding the
objects.

Spatial Learning Measurements

We had two main variables of interest during navigation test tri-
als. First, to assess memory for individually learned locations, we
calculated the percentage of the trajectory spent within object loca-
tions. This analysis separated each moment within the trajectory as
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either inside or outside any learned location and did not double
count if the subject was in a location that overlapped with two
objects. Because this metric does not indicate how memory per-
formance differs from random navigation (no memory), we also
calculated these percentages after rotating trajectories every 10°
within the full 360° space (creating scrambled distributions). We
then subtracted the mean percentage of the rotated (scrambled)
distributions from the true percentage to assess whether perform-
ance differed from chance. We used this rotation method rather
than simply dividing the locations by the full arena to account for
the possibility that subject-specific navigational strategies could be
biased toward locations that resemble the learned locations (e.g.,
at a particular radius from the center), which could result in above-
chance results without necessarily indicating any true memory for
the experience. We do note, however, that with some increments
(e.g., 140°), these distributions occasionally will be rotated onto
each other, but overall, the effect of such rotations will be aver-
aged out by using the full 360° space. Any such alignment on a
subset of increments would in fact diminish the likelihood of find-
ing a difference between congruent and incongruent conditions.
Finally, we calculated separate measures for congruent memory
(e.g., how much time subjects spent in coin locations when given
a coin prompt) and incongruent memory (e.g., how much time
subjects spent in coin locations when given a diamond prompt).
Second, to assess gist-based memory, we asked how well the

subject’s trajectory matched each spatial distribution. To do this,
we took “snapshots” of the subject’s location five times per second
and used a bivariate kernel density estimator to create a two-
dimensional spatial pattern. We similarly created a pattern with
the true object locations. We chose a relatively wide kernel to
capture broad regularities within each pattern; visualization of
patterns using different smoothing kernels are shown in Figure S2
in the online supplemental materials. We then measured the pat-
tern match by calculating KL divergence, as used by Richards et
al., 2014, which sums the differences at each pixel within the two-
dimensional space. Note that lower KL divergence indicates a bet-
ter pattern match. After creating the pattern, we added .001 to each
pixel of the distribution before summing the entire distribution to
1 to prevent issues related to individual pixels within the distribu-
tion containing a 0 denominator in the KL divergence formula.
We calculated these values for the coin and diamond distributions
separately. Because this metric does not account for random navi-
gation, we also calculated KL divergence after rotating trajectories
every 10° to assess chance performance.
After the navigation tests, we measured memory via a paper test

(see Figure 1C). The purpose of the paper test was to assess
whether our effects apply to a separate explicit test where subjects
can map out their memories in a less time-constrained fashion. A
single rater scored each set of x and y coordinates by hand. The pa-
per circles had radii of 6.5 cm and coordinates were scored to 1
mm accuracy using a ruler, after which they were converted to ar-
bitrary units representing the virtual environment. For this test, we
assessed individual memory by matching guessed locations to true
object locations. Since there was no way to verify which guess
was intended for which location, we matched guessed and true
locations over a series of steps. First, we created a full matrix of
all the distances between guessed and true locations. Then, we
chose the minimum distance from the matrix and dropped that
guess and true location out of the analysis. Then, we created a new

full matrix and repeated this process until we were left with one
guessed and one true location for that distribution. Individual
memory from this test was operationalized as the average distance
from these guesses, as perfect memory would constitute placing a
guess at each learned location, and thus zero spatial error. We
assessed gist-based memory by creating a 2-dimensional spatial
pattern out of the guessed locations and measuring KL divergence
from the true spatial pattern, similar to the process outlined above
during navigation.

Statistical Analyses

To verify that learning occurred, we used a paired samples t test to
compare the amount of time it took to find objects on the average of
the first versus last two trials of each type. We also aimed to quantify
whether subjects used more of an exemplar-based versus gist-based
strategy during learning. To do this, we used the last learned location
as the exemplar from which subjects would most likely rely. We
compared the percentage of time spent in the last learned location
and the experienced mean (the mean of all trials of that type up to
that point in learning) of that distribution via paired samples t-tests.

For the main memory analyses, we submitted the different met-
rics to one-way ANOVAs, with retention interval (15 min, 1 day,
7 days, 28 days) as a between-subjects factor. Principally, we con-
sidered congruent minus incongruent metrics to assess memory,
using percentage of time within object locations for individual
memory and KL divergence for gist-based memory. For any sig-
nificant results, we conducted follow-up independent samples t-
tests between each comparison.

Data Availability

Analysis code and data sets from this study were made available
to the reviewers during the review process and will be made pub-
licly available at the time of publication on the Open Science
Framework website (https://osf.io/mwfq4/wiki/home/).

Results and Discussion

Learning

Subjects showed consistent learning in the initial phase across
all delay conditions, as would be expected (because the retention
interval started after this phase). Learning was evidenced by
reduced time to find target objects across the 15 trials (see Figure
S1A in the online supplemental materials; first vs. last two trials:
coins first = 41.3 6 3.0; last = 22.6 6 1.7; t[135] = 5.5, dz = .47,
p , .001; diamonds first = 47.2 6 3.7; last = 23.2 6 1.5; t[135] =
6.3, dz = .54, p , .001). We also assessed their strategy during
learning by calculating the amount of time they spent in the last
learned location for that object type and in the experienced mean
of the corresponding distribution. Overall, subjects spent more of
their time in the previously learned location than the experienced
mean location (see Figure S1B in the online supplemental materi-
als; previous: 5.3 6 .2%; M: 4.7 6 .2%; t[135] = 5.3, dz = .46,
p, .001).

Retention

We predicted that performance for individual exemplars would
decrease over time. In line with this prediction, we found that the
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percentage of time spent in learned object locations decreased
over time on the navigation test (for congruent—incongruent:
15m: 9.4 62.2%; 1d: 10.9 6 2.2%; 7d: 5.1 6 1.8%; 28d: .3 6
.9%; F[3, 133] = 14.59, p , .001; see Figure 2A). Similarly, the
average spatial error on the explicit paper test increased over time
(for congruent—incongruent: 15m: �3.17 6 .42 AU; 1d: �2.89 6
.46 AU; 7d: �2.26 6 .51 AU; 28d: �.83 6 .43 AU; F[3, 133] =
12.93, p , .001; see Figure 2B). Follow-up analyses on the naviga-
tion test indicated differences between 15 min versus 28 days, t(66)
= 3.72, d = .92, p, .001, 1 day versus 7 days, t(66) = 2.01, d = .49,
p = .048, 1 day versus 28 days, t(64) = 4.32, d = 1.08, p , .001,
and 7 days versus 28 days, t(64) = 2.28, d = .57, p = .026. On the
paper test, follow-up analyses indicated differences between 15 min
versus 28 days, t(66) = 3.76, d = .91, p , .001, 1 day versus 28
days, t(64) = 3.14, d = .77, p = .003, and 7 days versus 28 days,
t(64) = 2.05, d = .51, p = .044.
We predicted more gist-based navigation at the 1-day and 7-day

intervals than at the 15-min or 28-day intervals. We calculated this
by measuring KL divergence of navigation trajectories for each
object type (coins or diamonds) compared with each distribution
(coins or diamonds), and then grouped the congruent (e.g., coin
search for coin distribution) versus incongruent (e.g., coin search
for diamond distribution) combinations. We then contrasted con-
gruent minus incongruent KL divergence differences for each

retention interval, using a one-way ANOVA with 4 levels (15 min,
1 day, 7 days, 28 days). Contrary to these predictions, memory for
the distributions decreased over time on the navigation test (for con-
gruent—incongruent: 15m: �.24 6 .05 AU; 1d: �.25 6 .04 AU;
7d: �.13 6 .04 AU; 28d: .002 6 .02 AU; F[3, 133] = 20.6, p ,
.001; see Figure 2C) and the explicit paper test (for congruent—
incongruent: 15m: �.946 .13 AU; 1d: �.906 .13 AU; 7d: �.676
.15 AU; 28d: .24 6 .13 AU; F[3, 133] = 13.8, p , .001; see Figure
2D). Follow-up analyses of the navigation test indicated differences
between 15 min versus 28 days, t(66) = 4.30, d = 1.07, p , .001,
1 day versus 28 days, t(64) = 5.34, d = 1.33, p , .001, and 7 days
versus 28 days, t(64) = 2.66, d = .66, p = .010, and marginally signifi-
cant differences between 15 min versus 7 days, t(68) = 1.70, d = .41,
p = .094, and 1 day versus 7 days, t(66) = 1.96, d = .47, p = .055.
On the paper test, follow-up analyses indicated differences between
15 min versus 28 days, t(66) = 3.82, d = .93, p , .001, 1 day versus
28 days, t(64) = 3.5, d = .86, p , .001, and 7 days versus 28 days,
t(64) = 2.09, d = .52, p = .041. To verify that this effect was not
driven by the incongruent combinations, we repeated these analyses
considering the congruent combinations alone. They again showed a
significant decrease over time on both the navigation (15m: �.14 6
.03 AU; 1d: �.14 6 .03 AU; 7d: �.08 6 .02 AU; 28d: �.02 6 .01
AU; F[3, 133] = 15.82, p , .001) and paper tests (15m: �.58 6 .07
AU; 1d: �.516 .08 AU; 7d: �.406 .09 AU; 28d: �.156 .07 AU;

Figure 2
Experiment 1 Results

Note. (A and B) Learned location memory was plotted as the percentage of time within object locations for the navigation test (A) and mean spatial error
for the paper test (B) for each retention interval and congruency type (e.g., congruent indicates a coin search prompt against a coin distribution). (C and
D) Gist-based memory was plotted as the KL divergence for the navigation test (C) and KL divergence for the paper test (D) for each retention interval
and congruency type. (E) True and average distribution patterns for all retention intervals of attended locations on the navigation test (top) and guessed
locations on the paper test (bottom) for coin (left) and diamond (right) distributions. Learned locations are represented as small circles for visibility, with
the coin and diamond mean locations as larger circles. See the online article for the color version of this figure.
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F[3, 133] = 16.43, p , .001). Contrary to our predictions, gist-like
representations decreased over time, with no improvement at any
delayed retention interval.
Another way to conceptualize gist in this paradigm is that

learned object locations may be maintained but their type (i.e.,
coins vs. diamonds) forgotten or swapped. In this context, gist
would correspond to the spatial distribution pooling across all
locations blind to type (i.e., “unlabeled”). We therefore calcu-
lated KL divergence adding both types of searches against both
distributions (i.e., coin search for coin distribution þ coin search
for diamond distribution, diamond search for coin distribution þ
diamond search for diamond distribution) and measured how
they changed over time and differed from chance performance
(i.e., with scrambled distributions rotated in 10-degree incre-
ments). Here we found a dissociation between the navigation and
paper tests: there was an effect of time on the paper test (15m:
�.25 6 .04 AU; 1d: �.13 6 .03 AU; 7d: �.14 6 .03 AU; 28d:
�.06 6 .03 AU; F[3, 133] = 13.9, p , .001) but no longer on the
navigation test (15m: �.04 6 .02 AU; 1d: �.03 6 .02 AU; 7d:
�.04 6 .01 AU; 28d: �.03 6 .01 AU; F[3, 133] = .16, p = .70).
On the paper test, follow-up analyses showed better memory at
earlier intervals between 15 min versus 1 day, t(68) = 2.34, d =
.56, p = .02, 15 min versus 7 days, t(68) = 2.10, d = .50, p = .04,
15 min versus 28 days, t(66) = 4.02, d = .99, p , .001, and mar-
ginally between 7 days versus 28 days, t(64) = 1.86, d = .46, p =
.067. In assessing whether these pooled KL divergence measures
differed from chance, all retention intervals were significant on the
navigation test except the one-day delay, 15m: t(35) = 2.86, dz =

.48, p = .007; 1d: t(33) = 1.59, dz = .27, p = .12; 7d: t(33) = 3.70,
dz = .63, p , .001; 28d: t(35) = 2.39, dz = .42, p = .02, and all
retention intervals were significant on the paper test, 15m: t(35) =
6.82, dz = 1.14, p , .001; 1d: t(33) = 3.98, dz = .68, p , .001; 7d:
t(33) = 4.14, dz = .71, p , .001; 28d: t(35) = 2.05, dz = .36, p =
.048. Together, these results provide evidence that unlabeled gist-
like representations are either stable or worsen over time; however,
there is no evidence that these representations improve as we
hypothesized or as was found by analogy in Richards et al. (2014).

Experiment 2

In Experiment 1, some individual object locations overlapped
with the mean location of the distribution, making it difficult to
disentangle memory for individual exemplars versus gist-like sta-
tistical averages. We addressed this issue in Experiment 2 by cre-
ating new distributions of coins and diamonds such that their
locations were arranged in a circle around a mean location at
which no object could be found (see Figure 3A). In this way, any
memory for objects at the mean location would provide clear evi-
dence for a gist-like representation (see Smith & Minda, 2002, for
a conceptually similar paradigm). Here we again predicted that
these gist representations of the mean location would be stronger
for one-day and seven-day retention intervals than for 15-min and
28-day retention intervals. Nevertheless, an alternative possibility
based on Experiment 1 is that gist-like representations would
decrease in strength over time.

Figure 3
Experiment 2 Object Locations and Results

Note. (A, top) A bird’s-eye view schematic of the circular environment in Experiment 2 shows object distributions, with 12 cyan circles representing coins and 12
red diamonds representing diamonds. (A, bottom) Patterns used to assess KL divergence for each object type are shown. (B and C) Gist-based memory was plotted
for the navigation test (B) and paper test (C) for each retention interval and congruency type. (D and E) Mean (false) location memory as assessed by percentage of
time within mean location is plotted for the navigation test (D) and percent of responses within the mean location for the paper test (E) for each retention interval
and congruency type. (F) True and average distribution patterns for all retention intervals of attended locations on the navigation test (top) and guessed locations on
the paper test (bottom) for coin (left) and diamond (right) distributions. Learned locations are represented as small circles for visibility, with the coin and diamond
mean locations as larger circles. See the online article for the color version of this figure.
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Method

Subjects

All subjects (N = 279; 86 male, 193 female) were undergraduate
students with normal or corrected-to-normal vision. Of these sub-
jects, 104 (23 male, 81 female) were excluded here for not finish-
ing the learning phase within the allotted 30-min period. The
excluded participants did not significantly differ in age from those
included in final analyses, F(1, 277) = .58, p = .446, although
females were more likely than males to not finish the learning
phase and therefore be excluded, v2(1, N = 279) = 5.90, p = .015.
The high exclusion rate likely stemmed from smaller object sizes
(see Stimuli), making the task more difficult. Similar to Experi-
ment 1, we aimed for 30 subjects/condition and stopped new sign-
ups after that number had been reached.

Stimuli

The stimuli were mostly the same as Experiment 1, with three
modifications: object sizes were reduced from a radius of 1.5 AU
to 1 AU to eliminate overlap with the mean location; the distribu-
tions (140° apart) were created by rotating locations around the
center of a circle (2.7 AU radius) in 12 equal increments (see Fig-
ure 3A), and there were fewer objects overall (12 coins and 12 dia-
monds in a randomized order). These locations ensured that the
center of the circle was the exact mean of the learned locations
and aligned with the peak of the heat map for the KL divergence
analyses.

Design and Procedure

Learning Phase. All procedures were the same as in Experi-
ment 1, with the exception that there were fewer trials (24 total) to
account for anticipated increased learning time owing to the
smaller object sizes (reduced radius from 1.5 to 1 AU).
Test Phase. All procedures were the same as in Experiment 1.

Statistical Analyses

To compute patterns, we used the same smoothing kernel to that
in Experiment 1; visualization of patterns using different smooth-
ing kernels are shown in Figure S3 in the online supplemental
materials. The majority of analyses were identical to Experiment
1. To calculate mean memory in Experiment 2, we submitted per-
centage of time spent in the congruent versus incongruent mean
location to a mixed, 2 (congruency: congruent mean, incongruent
mean) 3 4 (retention interval: 15 min, 1 day, 7 days, 28 days)
ANOVA. This was performed to specifically show that for this
metric, there was above-chance memory, representing the statisti-
cal average of the distribution.

Simulation

We aimed to confirm that gist-like and individual memory could
indeed be differentiated in this study. To accomplish this, we cre-
ated two sample subjects (S1 and S2) that performed the paper
spatial memory task in Experiment 2. S1 made spatial guesses
within a very small distance (less than the platform radius) of the
statistical mean location. S2 made spatial guesses within identi-
cally small distances of the individual platform locations. We cal-
culated both KL divergence and spatial error from the individual

locations by subtracting consistent minus inconsistent trials. Better
performance on these metrics is reflected by lower (more negative)
numbers. S1 (responding within the mean location) had KL diver-
gence from the distribution centered at the mean of �1.61 and spa-
tial error from individual locations of �5.58. This subject had
100% of responses within the mean location. S2 (responding
within learned platform locations) had KL divergence of �1.37,
individual memory of �7.13, and 0% of responses within the
mean location. Therefore, KL divergence was more sensitive to
behavior based on the mean than behavior based on individual
locations, and the proportion of guesses in the mean location was
completely dissociable based on these behaviors.

Results and Discussion

Learning

Subjects demonstrated learning across the 12 trials of the two object
types (see Figure S1C in the online supplemental materials; first versus
last two trials: coins first = 57.36 3.3; last = 47.06 2.7; t[174] = 2.3,
dz = .18, p = .02; diamonds first = 62.3 6 3.7; last = 47.3 6 2.9;
t(174) = 3.0, dz = .23, p = .003). Similar to Experiment 1, subjects
spent more time in the previously learned than the experienced mean
location (see Figure S1D in the online supplemental materials; previ-
ous: 2.66 .08%;M: 2.46 .08%; t[174] = 3.6, dz = .21, p = .006).

Retention

We predicted that performance for individual exemplars would
decrease over time. In line with this prediction, and similar to Experi-
ment 1, we found that the percentage of time spent in learned object
locations decreased over time on the navigation test (for congruent—
incongruent: 15m: 7.1 6 1.4%; 1d: 4.4 6 1.1%; 7d: 4.7 6 1.2%;
28d: .5 6 .7%; F[3, 172] = 13.63, p , .001). Similarly, the average
spatial error on the explicit paper test marginally increased over time
(for congruent—incongruent: 15m: �2.31 6 .37 AU; 1d: �2.0 6
.41 AU; 7d: �1.91 6 .36 AU; 28d: �1.39 6 .38 AU; F[3, 172] =
2.83, p = .09). Follow-up analyses on the navigation test indicated
differences between 15 min versus 28 days, t(87) = 4.14, d = .86,
p, .001, 1 day versus 28 days, t(88) = 2.85, d = .60, p = .005, and 7
days versus 28 days, t(88) = 2.88, d = .60, p = .005.

We also predicted that with a clearer distinction between the
individual object locations and the mean location, subjects might
show the hypothesized increase in gist representations at the one-
day and seven-day intervals relative to the 15-min and 28-day
intervals. Again contrary to these predictions, memory for the dis-
tributions (measured as congruent � incongruent KL divergence)
decreased over time on the navigation test (15m: �.22 6 .04 AU;
1d: �.14 6 .03 AU; 7d: �.13 6 .03 AU; 28d: �.03 6 .02 AU;
F[3, 172] = 13.59, p , .001; see Figure 3B) and marginally
decreased on the explicit paper test (15m: �0 59 6 .09 AU; 1d:
�.51 6 .10 AU; 7d: �.48 6 .09 AU; 28d: �.36 6 .09 AU;
F[3, 172] = 2.74, p = .10; see Figure 3C). Follow-up analyses on
the navigation test indicated differences between 15 min versus 28
days, t(87) = 3.72, d = .78, p , .001, 1 day versus 28 days, t(88) =
2.90, d = .61, p = .005, and 7 days versus 28 days, t(88) = 2.47,
d = .52, p = .016. We again repeated the analysis for the congruent
distribution alone, which showed a significant decrease over time
on both the navigation (15m: �.126 .02 AU; 1d: �.086 .02 AU;
7d: �.08 6 .02 AU; 28d: �.02 6 .01 AU; F[3, 172] = 13.6,
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p, .001) and paper tests (15m:�.346 .05 AU; 1d:�.286 .05 AU;
7d:�.276 .05 AU; 28d:�.196 .05 AU; F[3, 172] = 4.6, p = .03).
As in Experiment 1, we calculated the amount of time spent in

the unlabeled, pooled distribution of locations blind to object type.
We again found a dissociation between the navigation and paper
tests: we found a significant effect of time on the paper test (15m:
�.11 6 .02 AU; 1d: �.06 6 .01 AU; 7d: �.06 6 .02 AU; 28d:
�.02 6 .02 AU; F[3, 172] = 8.9, p = .003) but not the navigation
test (15m: �.03 6 .01 AU; 1d: �.01 6 .01 AU; 7d: �.03 6 .01
AU; 28d: �.004 6 .007 AU; F[3, 172] = 1.4, p = .24). Follow-up
analyses of the paper test showed a difference between 15 min ver-
sus 28 days, t(87) = 2.86, d = .61, p = .005, and a marginal differ-
ence between 15 min versus 1 day, t(83) = 1.68, d = .36, p = .097.
In assessing whether these pooled KL divergence measures dif-
fered from chance, the 15-min and seven-day intervals were sig-
nificant on the navigation test, 15m: t(41) = 2.14, dz = .33, p = .03;
1d: t(42) = 1.63, dz = .25, p = .11; 7d: t(42) = 2.41, dz = .37, p =
.02; 28d: t(46) = .48, dz = .07, p = .63, whereas the 15-min, 1-day,
and 7-day intervals were significant on the paper test, 15m: t(41) =
4.64, dz = .72, p , .001; 1d: t(42) = 4.54, dz = .69, p , .001; 7d:
t(42) = 2.80, dz = .43, p = .008; 28d: t(46) = .99, dz = .14, p = .33.
We were particularly interested in whether subjects would

falsely remember finding an object in the statistical average of
each distribution (that is, the center of the circle). Therefore, we
calculated the percentage of time spent in this location on the navi-
gation test and the percent of guesses made in this location on the
paper test. We submitted these measures to mixed 2 (congruency:
congruent mean, incongruent mean) 3 4 (retention interval: 15
min, 1 day, 7 days, 28 days) ANOVAs. On the navigation test, we
found a significant main effect of congruency (congruent: .41 6
.07%; incongruent: �.21 6 .05%; F(1, 171) = 40.6, p , .001; see
Figure 3D). There was no main effect of retention interval (15 m:
2.2 6 .08%; 1 day: .4 6 .08%; 7 days: .08 6 .07%; 28 d: .03 6
.06%; F(3, 171) = 1.74, p = .19), but there was a congruency by
retention interval interaction, F(1, 171) = 9.61, p = .002. Follow-
up analyses (on congruent—incongruent percentages) indicated
that false memory for the center location decreased between 15
min versus 28 days, t(87) = 2.83, d = .59, p = .006, 1 day versus
28 days, t(88) = 2.76, d = .58, p = .007, and 7 days versus 28 days,
t(88) = 2.10, d = .44, p = .04. On the paper test, we similarly found
a main effect of congruency (congruent: 1.2 6 .3%; incongruent:
�.9 6 .2%; F(1, 171) = 33.9, p , .001; see Figure 3E). There was
no main effect of retention interval (15 m: .4 6 .3%; 1 day: .2 6
.3%; 7 days: .08 6 .3%; 28 d: .2 6 .3%; F(3, 171) = 1.08, p =
.30), and there was a marginally significant congruency by reten-
tion interval interaction, F(1, 171) = 3.02, p = .08. Follow-up anal-
yses (on congruent—incongruent percentages) indicated that false
memory for the center location decreased between 15 min versus
28 days, t(87) = 2.19, d = .46, p = .03, and marginally between 7
days versus 28 days, t(88) = 1.69, d = .35, p = .095.
Finally, we contrasted representations of the mean versus the

learned locations by calculating the relative proportion of time
spent in each on the navigation test or relative proportion of
guesses made on the paper test. We performed this analysis by
dividing mean location occupancy by the sum of mean test and
learned location occupancy, and we calculated it for the consistent
locations only (for example, only considering the mean coin loca-
tion on coin probe trials). We submitted these measures to one-
way ANOVAs with 4 levels of retention interval (15 min, 1 day, 7

days, 28 days). On the navigation test, we found a marginally sig-
nificant effect of retention interval, F(1, 173) = 3.3, p = .07, with a
trend toward decreasing levels of relative mean versus learned
location guesses over time (15 m: 10.1 6 .5%; 1 day: 9.5 6 .6%;
7 days: 9.1 6 .5%; 28 d: 8.8 6 .6%). For the paper test, we
removed 21 subjects who had no guesses in either the mean or
learned locations. We found no significant effect of retention interval,
F(1, 152) = 2.6, p = .11, although this test also showed a quantitative
decrease in relative mean guesses over time (15 m: 11.8 6 2.2%; 1
day: 7.9 6 1.5%; 7 days: 8.3 6 1.7%; 28 d: 7.3 6 1.5%). Overall,
these results suggest that gist memory—here represented by common
patterns and false memory for unlearned, central information—
decreases over time.

Experiment 3

How can we reconcile the results of Experiments 1 and 2 with
the compelling finding of Richards et al. (2014) that gist-based
memory increases over time? In Experiment 3, we tackle a couple
of methodological differences that might explain this discrepancy.

First, in Experiments 1 and 2, subjects learned two spatial distri-
butions, whereas in Richards et al. (2014), only one distribution
was learned. We explored this difference above by conducting
analyses of whether subjects had an unlabeled gist-like representa-
tion for locations pooled across object types. This conceptually
resembles having a single distribution. This did impact the results
of both experiments by eliminating the decrease of gist representa-
tions over time during navigation (though the decrease remained
in the paper tests). Note that neither these pooled analyses nor any
of the other analyses uncovered an increase in gist representations
over time. Nevertheless, there could be an unforeseen consequence
to using two distributions rather than one, so here we employed a
single distribution.

Second, in Richards et al. (2014) trials were fixed in a particular
order, whereas in our study this order was randomized. Therefore,
here we manipulated trial order by specifically altering the location
of the last learning event.

Third, there are obvious methodological differences between
running experiments with rodents and humans. One possible factor
affecting our results is that we gave instructions at the final test to
navigate toward previously learned locations. Here we explore
whether instead asking subjects to navigate to a new location from
the same underlying distribution would produce different results.
Although rodents could not be instructed in either way, they may
have naturally pursued such a strategy.

To summarize the new design, subjects learned a single, bimodal
distribution (coin only) with twice as many learning episodes in one
mode than the other (resembling the weighted bimodal distribution
experiments of Richards et al., 2014; see Figure 4A). We ran six
groups of subjects, half of which took a test after 15 minutes and half
after 28 days, following findings in Experiments 1 and 2 that there
were no U-shaped effects on retention but rather gradual changes over
time. We manipulated trial order by having two groups of subjects
learn the last location in the more likely mode (15m, major mode:
15mM; 28d, major mode: 28dM) and another two groups in the less
likely mode (15m, minor mode: 15mm; 28d, minor mode: 28dm; simi-
lar to Richards et al., 2014). Additionally, for another two groups (who
both had the last location in the less likely mode), we explored whether
orienting subjects toward distributions modified performance (15m,
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minor mode, distributional instructions: 15mmD; 28d, minor mode, dis-
tributional instructions: 28dmD). Principally, we were interested in
whether these differences could account for the discrepancy between
our results and those of Richards et al. (2014).

Method

Subjects

All subjects (N = 204; 79 male, 124 female, 1 nonbinary) were
undergraduate students with normal or corrected-to-normal vision.
Of these subjects, 11 (one male, 10 female) were excluded here
for not finishing the learning phase within the allotted 30-min pe-
riod; those excluded did not differ in age, F(1, 202) = .15, p =
.702, or gender, v2(2, N = 204) = 4.43, p = .109) from those
included in the final analysis. Similar to prior experiments, we
aimed for 30 subjects/condition and stopped new signups after that
number had been reached.

Stimuli

The stimuli were the same size as in Experiment 2 (radius of 1
AU). The single bimodal distribution was created from 12 loca-
tions in Experiment 1, eight exemplars from the coin distribution
(major mode) and four exemplars from the diamond distribution
(minor mode; Figure 4A).

Learning Phase

All procedures were the same as in Experiments 1 and 2, except
that there were only 12 trials total (all coin trials). Every three tri-
als included two trials from the major mode and one trial from the
minor mode, in a random order within each set (except for the final
triplet). Within the final triplet, four groups of subjects finished
learning in the minor mode (15mm, 28dm, 15mmD, 28dmD) and two
groups finished in the major mode (15mM, 28dM).

Test Phase

All procedures were the same as in Experiments 1 and 2, with
two exceptions. First, we probed memory in the navigation test
with three one-minute search trials and in the paper test with only
a single circle. Second, we gave different navigation instructions
to two groups of subjects who finished learning in the minor mode
(15mmD, 28dmD). They were told to look for locations that may
not be identical to previously learned objects but would be drawn
from the same distribution.

Memory Measurements

All measurements were the same as in Experiments 1 and 2,
except that we could no longer compare congruent and incongru-
ent distributions because there was only one object type. During
learning, we compared the percentage of time spent in the last
learned location and the experienced mean (the mean of all trials

Figure 4
Experiment 3 Object Locations and Results

Note. (A, top) Bird’s-eye view schematic of the circular environment shows a bimodal distribution of 12 circles (black). Black plus signs denote the
means of each mode. (A, bottom) Patterns used to assess KL divergence are shown. (B and C) Learned location memory for the navigation test (B) and
mean spatial error for the paper test (C) are plotted for the 15-min and 28-day intervals. (D and E) Gist-based memory is plotted for the navigation (D)
and paper test (E) for the 15-min and 28-day intervals. (F) True and average distribution patterns are shown for both retention intervals of attended loca-
tions on the navigation test (top) and guessed locations on the paper test (bottom). Learned locations are represented as small circles for visibility, with
the major and minor mode means as larger circles. See the online article for the color version of this figure.
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of that type up to that point in learning) of both the major and
minor modes of the distribution via paired samples t-tests.

Statistical Analyses

To compute patterns, we used the same smoothing kernel to
that in Experiments 1 and 2; visualization of patterns using dif-
ferent smoothing kernels are shown in Figure S4 in the online
supplemental materials. The data were analyzed in the same
manner as in Experiments 1 and 2. To compare across order
and instruction conditions, we submitted the memory measure-
ments to 2 (retention interval: 15 min, 28 days) 3 3 (learning
condition: last location in major mode, last location in minor
mode, last location in minor mode with distributional instruc-
tions) ANOVAs.

Results and Discussion

Learning

Subjects demonstrated learning across the 12 trials (see Figure
S1E in the online supplemental materials; search time for the first
versus last two trials: first = 86.2 6 7.5 s; last = 60.8 6 3.3 s;
t(192) = 3.1, dz = .22, p = .002). They spent more time in the last
learned location (2.2 6 .08%) and the experienced major mode
(2.0 6 .1%) than the experienced minor mode mean (1.6 6 .07%;
last learned versus minor mode: t(192) = 6.5, dz = .46, p , .001;
major mode versus minor mode: t(192) = 4.2, dz = .30, p , .001).
There was no significant difference between the last learned and
the major mode mean, t(192) = 1.28, dz = .09, p = .20 (see Figure
S1F in the online supplemental materials).

Retention

We predicted that performance for individual memories would
decrease over time. In line with this prediction, and similar to the
previous experiments, the percentage of time spent in learned object
locations marginally decreased over time on the navigation test
(main effect of retention interval: 15m = 1.1 6 .4%; 28d = .2 6
.2%; F(1, 190) = 3.20, p = .08; no main effect of learning condition:
major mode = .86 .4%; minor mode = .56 .2%; minor mode with
distribution instructions .76 .3%; F(2, 190) = .80, p = .37; no inter-
action: F(1, 190) = .28, p = .60; Figure 4D). Similarly, the average
spatial error on the explicit paper test increased over time (main
effect of retention interval: 15m = �.54 6 .08 AU; 28d = �.23 6
.07 AU; F(1, 190) = 8.83, p = .003; no main effect of learning con-
dition: major mode = �.32 6 .09 AU; minor mode = �.41 6 .06
AU; minor mode with distribution instructions �.52 6 .09 AU;
F(2, 190) = .000, p = .99; no interaction: F(1, 190) = .20, p = .66;
Figure 4E).
On the navigation test, we found better gist memory (lower KL

divergence) after 15 min than 28 days (main effect of retention
interval: 15m = �.03 6 .008; 28d = �.005 6 .005; F(1, 190) =
9.52, p = .002; Figure 4B). There was no main effect of learning
condition (major mode = �.01 6 .008; minor mode = �.02 6
.006; minor mode with distribution instructions �.03 6 .008;
F(2, 190) = .37, p = .54), nor an interaction between retention
interval and learning condition, F(1, 190) = 1.14, p = .29. On the
paper test, we similarly found better gist memory after 15 min
than 28 days (main effect of retention interval: 15m = �.10 6 .01;
28d = �.03 6 .01; F(1, 190) = 10.2, p = .002) but no main effect

of learning condition (major mode = �.05 6 .02; minor mode =
�.07 6 .01; minor mode with distribution instructions �.08 6
.02; F(2, 190) = .02, p = .90) or interaction, F(1, 190) = 1.7, p =
.19 (Figure 4C). Therefore, we found no evidence that number of
distributions, learning order, or instructions were responsible for
the results of the earlier experiments. In summary, Experiment 3
supported evidence from prior experiments that both individual
and gist memory decreased over time but did not support the idea
that retention memory is biased toward the last learned location or
that offering different test instructions emphasizing the distributed
nature of locations changed performance.

General Discussion

Across three experiments, we found that gist representations
of spatially structured experiences emerged during learning and
decreased over time. This occurred (a) in a similar manner to
memory for individually learned locations, (b) whether or not
the mean location overlapped with these locations, and (c)
whether there were one or two learned distributions. These find-
ings differ from an account proposing that structured knowledge
improves over time (Richards et al., 2014) and with our predic-
tions that such gist would take time to emerge but would also
decline at long delays (i.e., maximal at intermediate retention
intervals).

In category learning, false memory, and schema-related para-
digms, generalization from learned information to centrally
related information occurs immediately (Bower et al., 1979; Pos-
ner & Keele, 1968; Read, 1996; Roediger & McDermott, 1995;
Spencer & Hund, 2002). Similarly, here we found evidence of
such generalization at early time intervals, which was generally
maintained for at least one day before gradually decreasing (see
Tompary et al., 2020, Zeng et al., 2021, and Berens et al., 2020,
for very recent converging results). Our findings support recent
complementary learning systems models (McClelland, 2013;
Schapiro et al., 2017) proposing that generalization can occur
rapidly. The idea that gist forms rapidly also supports fuzzy trace
theory, which posits that detailed and gist representations are
created in parallel (Reyna & Brainerd, 1995). This theory addi-
tionally states that gist representations do not become stronger
over time, concurring with our results.

Another fitting psychological model is the category adjustment
model, which suggests that detailed spatial memories are nested
within categories and memory for them become adjusted based on
category means (Huttenlocher et al., 1991). Here, coin and dia-
mond labels make up the categories and the individual object loca-
tions make up the exemplars, and adjusting responses toward the
mean of these categories could explain findings such as the false
memories seen in Experiment 2. Although our results could seem
at odds with the finding that category adjustment is greater at lon-
ger lags, these lags in prior research are either less than a minute
in length (Holden et al., 2013) or years long with repeated inter-
vening exposure, such as for spatial memory within a college cam-
pus (Uttal et al., 2010). Therefore, it could be that the likelihood
of making category adjustments decreases over longer periods of
time without repeated exposure.

It is important to point out that the discrepancy between our
findings and Richards et al. (2014) could be accounted for by
methodological differences between the studies. First, there are
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clear differences in cognitive capacity between rodents and
humans and, relatedly, in the salience of swimming to safety ver-
sus navigating using only forward movements and rotations in
virtual reality. Second, in Richards et al. (2014), trials were fixed
in a particular order for every animal, whereas in our study this
order was randomized for each subject. We explored whether the
order mattered in Experiment 3, in particular whether there was
a recency bias, by manipulating the location on the final trial.
However, we did not find evidence for a recency effect bias,
leaving inconclusive whether trial order could explain the differ-
ing dynamics of consolidation. Third, in Richards et al. (2014),
single platform locations were repeated four times on each day,
whereas here each location was learned only once. The lack of
repetitions here may limit the result by reducing the strength of
individual memories and reduce memory representations after
longer delays. Finally, and perhaps most importantly, in Rich-
ards et al. (2014) learning occurred across several days prior to
the retention interval, whereas in our study, learning occurred in
a single session. Interestingly, two other recent papers using sin-
gle-session learning similarly found that gist-like representations
slowly faded over time (Berens et al., 2020; Tompary et al.,
2020). However, spaced learning (e.g., Cepeda et al., 2008)—
once proposed to be “the enemy of induction” (see Kornell &
Bjork, 2008, p. 585)—has been shown to promote generalization
via abstraction of relevant features and forgetting of irrelevant
features (Vlach, 2014; Vlach & Sandhofer, 2012; Vlach et al.,
2008). It remains an open question as to whether the rapidly
formed, gist-like representations shown here differ from those
formed in a slow, spaced fashion, and allowing time to elapse
between related experiences is an important consideration for
future research.
There are some other important limitations to these studies.

Although individual location memory was above chance at the
earliest retention intervals, we did not ask for specific memories
(e.g., “where was the fifth learned coin location?”) in either the
navigation or paper test, limiting the precision with which indi-
vidual memory could be ascertained. Experiments 2 and 3 had
smaller object sizes by design to accommodate having a distribu-
tion with a full, nonexistent platform in its mean location. This
led to smaller learning effect sizes from first to last learning trials
in experiment 2 (dz = .18 for coins, dz = .23 for diamonds) and
Experiment 3 (dz = .22 for the bimodal distribution) relative
to Experiment 1 (dz = .47 for coins, dz = .54 for diamonds). This
also led, especially in Experiment 2, to a high exclusion rate due
to subjects not finishing learning within the allotted time. This
was an a priori exclusion criterion and did not differ by retention
interval condition, but it may limit the generalizability of these
findings to the high-performing subject population. Furthermore,
in Experiment 2, more females were excluded than males, lead-
ing to a possible limitation of how the results may generalize.
Regarding gender differences, however, we found inconclusive
supporting evidence from exclusion numbers in Experiments 1
and 3.
Last, we may be limited in our ability to interpolate possible dif-

ferences within the intermediate retention intervals. In Experiment
3, we prioritized manipulating instructions at test and the location
of the last learning trial at the earliest and latest retention intervals
(leading to six total conditions) rather than testing all retention
intervals from Experiments 1 and 2 (four total conditions). We

made this decision because Experiments 1 and 2 showed no U-
shaped results over time as we had initially predicted. Finally,
there could be effects at earlier (, 15 min) or longer (. 28 d)
intervals that could prove important to the story.

One interesting feature of our results in Experiment 2 is that
we found trends toward decreased relative evidence for the mean
representation compared with the learned locations over time. To
the extent that gist is represented by a true statistical average
“blending” of experiences, this measure shows evidence against
even the relative strength of gist increasing over time. However,
gist could also represent a distribution of the learned locations—
with less precise detail, but a distribution nonetheless—without
necessarily representing a blended average across experiences.
Yet another possibility is that we see this trend because of rela-
tively weakly learned individual experiences of finding platforms
only a single time. In the DRM paradigm, false memory nega-
tively correlates with veridical memory (Roediger et al., 2001),
and therefore the effects of gist remaining better maintained over
time could result more from a loss of veridical memories than a
strengthening of gist, per se. Here, with arguably weaker initial
true memories than in other studies, these relative stabilities
could differ. We also note that, although the quantitative nature
of these tendencies differs from prior studies, in Experiment 2
they were only trends; as such, we hope future work disambigu-
ates these possibilities.

Ultimately, our findings are more ambivalent to the idea that
off-line processes, such as hippocampal replay of these learned
experiences (Richards et al., 2014; Stickgold & Walker, 2013),
continue to contribute in substantial ways to memory generaliza-
tion. Under different conditions, such as with different paradigms,
with spaced learning, or with stronger learning, off-line processes
may enrich these representations. However, here, with gist repre-
sentations declining over time in every experiment, it appears that
forgetting overwhelms any off-line processes that positively con-
tribute to generalization.
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