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There  are  exponentially  more  correlations  than  voxels  in  brain  imaging  data.
Such  correlations  are  not  commonly  analyzed  at  full  scale  for  computational  reasons.
We  developed  full  correlation  matrix  analysis  (FCMA)  to  overcome  these  bottlenecks.
FCMA  incorporates  and  refines  parallel  computing  and  machine  learning  algorithms.
We  evaluate  the performance  of  FCMA  and  demonstrate  its use  with  a sample  dataset.
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a  b  s  t  r  a  c  t

Background:  The  analysis  of  brain  imaging  data  often  requires  simplifying  assumptions  because  exhaus-
tive  analyses  are  computationally  intractable.  Standard  univariate  and  multivariate  analyses  of brain
activity  ignore  interactions  between  regions  and  analyses  of  interactions  (functional  connectivity)  reduce
the computational  challenge  by  using  seed  regions  of  interest  or brain  parcellations.
New method:  To  meet  this  challenge,  we  developed  full correlation  matrix  analysis  (FCMA),  which  lever-
ages and  optimizes  algorithms  from  parallel  computing  and  machine  learning  to  efficiently  analyze  the
pairwise  correlations  of all voxels  in  the  brain  during  different  cognitive  tasks,  with  the  goal  of  identifying
task-related  interactions  in  an  unbiased  manner.
Results: When  applied  to  a localizer  dataset  on a small  compute  cluster,  FCMA  accelerated  a  naive,  serial
approach  by  four  orders  of magnitude,  reducing  running  time  from  two  years  to  one  hour.  In addition
to  this  performance  gain, FCMA  emphasized  different  brain  areas  than  existing  methods.  In particular,
beyond  replicating  known  category  selectivity  in  visual  cortex,  FCMA  also  revealed  a region  of  medial
prefrontal  cortex  whose  selectivity  derived  from  differential  patterns  of functional  connectivity  across
categories.
Comparison  with  existing  method(s):  For  benchmarking,  we  started  with  a  naive  approach  and  progres-

sively  built  up  to  the  complete  FCMA  procedure  by adding  optimized  classifier  algorithms,  multi-threaded
parallelism,  and multi-node  parallelism.  To  evaluate  what  can be  learned  with  FCMA,  we  compared  it
against  multivariate  pattern  analysis  of  activity  and  seed-based  analysis  of  functional  connectivity.
Conclusions:  FCMA  demonstrates  how  advances  in  computer  science  can  alleviate  computational  bot-
tlenecks  in  neuroscience.  We  have  released  a software  toolbox  to  help  others  evaluate  FCMA.
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1. Introduction

Functional magnetic resonance imaging (fMRI) studies often
seek to associate cognitive processes with brain regions. A classic
finding of this type is the category selectivity of occipital and tem-

poral cortex during visual perception, with punctate subregions
responsive to objects from particular categories (Kanwisher, 2010;
Op de Beeck et al., 2008). However, this univariate approach has
been challenged by multivariate pattern analysis (MVPA) methods
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Norman et al., 2006; Kriegeskorte et al., 2008). In the case of object
erception, MVPA demonstrated that category selectivity is not
estricted to specific areas, but is also reflected in patterns of activ-
ty throughout occipital and temporal cortex (Haxby et al., 2001).
uch findings have been offered as evidence that representations
n the brain can be distributed over multiple areas. Here we extend
his view, suggesting that the neural mechanisms supporting cog-
itive processing may  be distributed over the entire brain, outside
f traditional domain-specific systems. It may  have been difficult
o fully recognize this with existing analysis methods because of
wo implicit biases in such approaches.

First, the basic currency of MVPA is typically the amplitude
f blood oxygenation level-dependent (BOLD) activity across a
et of voxels. Although such spatial patterns can reveal infor-
ation about neural representations, they may  fail to capture

nteractions between brain regions over time that support neu-
al processes. Even if neurons show identical average firing rates
cross behavioral tasks, when and how they interact with each
ther can distinguish between tasks (Vaadia et al., 1995; Cohen
nd Newsome, 2008; Poulet and Petersen, 2008; Cohen and Kohn,
011). In fMRI, the BOLD activity of a voxel may  fluctuate syn-
hronously with certain other voxels in one task and with different
oxels in another task, without the time-locked average amplitude
f activity in any of these voxels reliably differing between the
asks or from baseline. A brain region X, for example, which con-
ributes to object recognition and contains voxels that behave in
his way, may  show either no evoked response or similar responses
o all object categories, and therefore would not be identified as
ategory selective by standard analyses that contrast or classify pat-
erns of activity. If region X’s interactions with other regions differ
y category, however, it could show category-selective patterns of
orrelations.

Second, although the analysis of correlations in fMRI data, or
unctional connectivity (Fox and Raichle, 2007; Smith, 2012), has
ecome prevalent, this approach is subject to certain limitations.
uch analyses often involve first identifying a small set of “seed”
egions of interest that show task-related activity and then exam-
ning correlations between these seeds and other voxels in the
rain. When seed correlations are calculated during tasks, efforts
re made to eliminate the spurious correlations induced by evoked
esponses, such as by modeling these responses and the task-
elated seed timecourse simultaneously (as in psychophysiological
nteraction analysis; Friston et al., 1997) or by removing these
esponses prior to estimating correlations (as in background con-
ectivity analysis; Norman-Haignere et al., 2012). Regardless, by
hoosing seeds based on activity, these procedures are affected by
he limitations of activity-based methods highlighted above and
ould fail to identify region X (since its activity is not category

elective). Some studies have attempted to consider functional
onnectivity more broadly by using MVPA to classify patterns of
orrelations amongst multiple regions both at rest (e.g., Dosenbach
t al., 2010) and during tasks (e.g., Pantazatos et al., 2012; Watanabe
t al., 2012; Mokhtari and Hossein-Zadeh, 2013). However, in these
tudies, only a small number of regions were selected relative to the
otal number of voxels in the brain, and this selection was  based on
ctivity in the same or other studies, or on coarse anatomical par-
ellations of the brain. To avoid any selection bias and consider the
ull range of data when identifying task-related interactions, the
orrelation of every voxel with every other voxel may  be needed at
he outset.

Here we describe the technical details of a method, full corre-
ation matrix analysis (FCMA), that surmounts these limitations

y performing unbiased multivariate analyses of whole-brain
unctional connectivity. The basic currency of FCMA is the full cor-
elation matrix: the temporal correlation in BOLD activity of every
oxel in the brain with every other voxel. A separate matrix is
e Methods 251 (2015) 108–119 109

computed for each temporal epoch of interest in a task, such as
trial or block, just as would be done for mean activity or activity
patterns. These matrices are then labeled with the task condition
for that epoch and submitted to MVPA. Critically, the input to the
classifier is now correlation patterns, rather than activity patterns.
This analysis determines, in an exhaustive manner, which correla-
tions distinguish between conditions. Region X above can therefore
be found because it has differential interactions as a function of
category.

This analysis may  sound straightforward, but it is currently com-
putationally intractable using a naïve approach. Consider the small
fMRI dataset that we  use later for an example application, which
contains 18 subjects, 12 epochs per subject over two  experimental
conditions, and 34,470 voxels in the brain. The first, and easi-
est, part of FCMA is calculating the pairwise voxel autocorrelation
matrix of every epoch. On a machine with two 4-core 2.6 GHz Xeon
CPUs, running Matlab’s corr function in batch mode, the computa-
tion of all 216 matrices (each with more than 594 million unique
entries) takes 2.5 h and requires 478 GB of disk space at the end
(and much more memory at intermediate stages). Rewriting the
Pearson correlation computation in C++ using matrix multiplica-
tion and optimized linear algebra packages shortens running time
to 348 s on the same machine. Thus, computing correlation matri-
ces from fMRI data per se is not the hard problem and, in fact, there
are already efficient tools, such as InstaCorr in AFNI, that have been
used for this purpose (Gotts et al., 2013).

The more challenging problem arises when this massive amount
of data needs to be analyzed. Typical seed-based functional connec-
tivity maps are 3-D, reflecting the correlation of one seed voxel with
all other voxels in the brain. Such data can be analyzed in a voxel-
wise manner by examining which voxels have correlations with the
seed that are reliably positive or negative, or that differ between
conditions, using simple t-tests over subjects. The full correlation
matrix, on the other hand, can be thought of as 6-D, reflecting one of
these 3-D maps for every voxel in the 3-D brain. The sample dataset
above produces 216 of these 6-D matrices, each with a correlation
value for more than 594 million unique voxel pairs. That is, there
are 4–5 orders of magnitude more variables to analyze, depending
on the number of voxels. At that scale, algorithmic optimization
and parallelization are necessary for the analysis to be tractable on
current hardware, and machine learning techniques are needed to
make sense of the data.

In particular, the set of full correlation matrices can be mined
with MVPA to identify which pairs, and combinations of pairs,
reliably discriminate between experimental conditions across sub-
jects. To do so, the correlations are first preprocessed, including
normalizing each coefficient with the Fisher transform and then
z-scoring all coefficients across the matrix within subject. To clas-
sify two conditions, these correlation matrices are then divided
into training and test sets, such as by leaving out one subject at
a time, which enables random-effects cross-validation. Using this
approach on the dataset above, the classifier would be trained on
204 matrices to find a boundary separating the conditions in a 594
million dimensional hyperspace and tested on the remaining 12
matrices to obtain a classification accuracy. With the data-driven
feature selection approach described below, training and testing a
basic linear classifier (e.g., linear support vector machine, SVM) on
the correlation matrices in C++ would take 36 days on the machine
described above. For all 18 subjects, this process must be repeated
17 more times for a total of 646 days.

We  designed FCMA to address these challenges, by incorporat-
ing and refining algorithms for parallel computing and machine
learning. Applying this method on a compute cluster, the time
required for the analysis above was reduced from two  years to one

hour. Below we  describe the technical details of the method, and
then the results of an example application.
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.1. Description of FCMA

.1.1. Overview
FCMA incorporates efficient algorithms for correlation compu-

ation, massive parallelization to manage the scale of the data,
nd on-demand analysis without the need for storage space or
ime. It runs on a compute cluster with any number of nodes,
sing a controller-worker architecture, and takes standard NIFTI-
ormatted images as input. A dataset consisting of fMRI activity over
ime in a set of voxels is divided in multiple temporal epochs and
tored on a disk accessible to each node. These (relatively small)
ata are copied into the memory of each worker and the controller
ynamically allocates a subset of voxels for computation when a
ode is available. A vector is computed for every epoch of each
oxel using matrix multiplication, reflecting its correlation with
very other voxel in that epoch. To handle the high dimensional-
ty of these vectors without imposing biases, they are submitted to

VPA and the resulting cross-validation accuracy is assigned to the
oxel. These accuracy scores can be used for nested feature selec-
ion, leading to a final round of MVPA over the correlation matrices
f the automatically selected voxels.

.1.2. Optimization of correlation computation
The Pearson correlation between several pairs of variables can

e reduced to a matrix multiplication by normalizing the data
Worsley et al., 2005). Specifically, the timeseries for a given voxel
nd epoch is normalized by subtracting the mean and then dividing
ach value by the root sum of squares of the mean-centered data.
he number of these operations scales linearly with the number of
oxels, and thus computation poses little burden.

Matrix multiplication is significantly faster than other
pproaches for computing correlations. In addition, it can ben-
fit from generally available technological advances in modern
PUs, such as the single instruction, multiple data (SIMD) set.
CMA implements advanced linear algebra algorithms from the
otoBlas library (Goto and van de Geijn, 2008) to exploit this
ardware. At peak performance, with SSE instructions over 128-bit
MM  registers, these algorithms allow for eight single-precision
oating-point operations (four additions and four multiplications)

n one CPU cycle.

.1.3. Parallelization of correlation computation
FCMA was designed to run on a compute cluster with modern

ommercial machines and X86 architecture; each machine needs a
easonable amount of memory (e.g., 16 GB). Large-scale computing
echniques are leveraged to accelerate computation and analysis. A
ontroller/worker model is used (Fig. 1), in which a controller pro-
ess coordinates numerous worker processes running on multiple
achines with the Message Passing Interface (MPI). The controller

llocates computation and analysis tasks to the workers; typically,
ne process is assigned to each node in order to fully utilize its
esources. Each process consists of multiple threads to compute
nd analyze multiple voxels simultaneously within one node.

The first step of FCMA is to read in preprocessed fMRI data (e.g.,
orrected for head motion and other sources of noise) and text files
pecifying the experimental design. Based on this design, the data
re partitioned into epochs. For every voxel and epoch, the data are
ormalized as described above. The controller then directs all avail-
ble worker processes to load the full data from the storage device

nto memory and dynamically assigns each a subset of voxels to
nalyze. In other words, the full correlation matrix is automatically
ivided into groups of rows, and they are spread across worker
rocesses. When the analysis in a worker finishes, the controller
e Methods 251 (2015) 108–119

collects the results, stores them in memory, and assigns another
group of voxels.

By distributing the full correlation computation in this way over
a 66-node cluster, and by using data normalization and optimized
matrix multiplication algorithms in GotoBlas, total correlation
computation time for our example dataset is reduced from 2.5 h
to 0.73 s.

2.1.4. Parallelization of voxel-wise classifier analysis
To avoid the burden of storing full correlation matrices to disk

(and associated write/read time), analysis is performed online
within the nodes, immediately after correlation computation. After
a worker process has computed a correlation matrix of the assigned
subset of voxels with the rest of the voxels for each epoch, the same
row of all matrices is extracted. Each of these rows comprises a
vector of the correlations between a given voxel and all other vox-
els in the brain for one epoch. These correlation vectors are then
labeled with the condition of the experimental design to which the
epoch corresponds, and submitted to MVPA as training (or test)
patterns. Each vector reflects a point in a high-dimensional space,
and the goal of MVPA is to determine how accurately the points
with different labels can be separated. MVPA is run with multi-
ple threads; each thread processes the correlation vectors across
different epochs for one voxel.

The default FCMA configuration uses a linear Support Vector
Machine (SVM) classifier based on LibSVM (Chang and Lin, 2011).
On a server with two  4-core 2.6 GHz Xeon CPUs, the standard
version of LibSVM in serial mode takes about 90 s to perform cross-
validation on a set of 204 correlation vectors from one voxel (each
of length 34,470) in our example dataset. To speed up this process,
we accelerated the original LibSVM algorithm by pre-computing
the linear kernel matrices with GotoBlas. This reduced the running
time to 2 s per voxel in a single thread.

2.1.5. Classification of correlation patterns
Applying the classifier to the correlation vectors produces a

cross-validation accuracy for each voxel, reflecting how informa-
tive its correlations with the rest of the brain are about the task
conditions (Fig. 2). FCMA can stop here, providing an unbiased,
voxel-wise “map” of the extent to which every brain region show
task-related changes in whole-brain functional connectivity.

The results of the voxel-wise classifier analysis described above
can also be used as feature selection for MVPA, by ranking vox-
els according to the accuracy with which their individual patterns
of correlation differentiate conditions and then selecting a subset
that exceeds some threshold (e.g., percentage of voxels, absolute
accuracy level, statistical significance over cross-validation folds,
etc.). FCMA implements this step as well: a chosen subset of vox-
els can be submitted again to obtain and analyze with MVPA the
correlation matrix for only these voxels. This again requires that
the original data be partitioned into training and test sets, with the
feature selection step only applied to the training sets and the final
classification accuracy derived from the held-out test sets. Using
FCMA on our cluster, the total running time was reduced from 646
days to 72 min.

2.1.6. Code availability
We wrote a software toolbox that implements FCMA and it can

be downloaded from GitHub: http://princetonuniversity.github.
io/fcma-toolbox. The source code is written in C++ and requires

OpenMP, MPI, and GotoBlas/Intel MKL  packages. A compute clus-
ter is recommended for running the toolbox, although it can also
be run on a standalone workstation. The current stable version is
1.7 and it is being actively updated.

http://princetonuniversity.github.io/fcma-toolbox
http://princetonuniversity.github.io/fcma-toolbox
http://princetonuniversity.github.io/fcma-toolbox
http://princetonuniversity.github.io/fcma-toolbox
http://princetonuniversity.github.io/fcma-toolbox
http://princetonuniversity.github.io/fcma-toolbox
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Fig. 1. Workflow overview. FCMA uses a controller/worker architecture, in which each worker first loads the full data into memory. The full data consist of a matrix with V
voxels  in rows and T timepoints in columns; the timepoints can be subdivided into E epochs, each with TE timepoints (inset depicts two voxels and epochs). The controller
process does the following: assigns a subset S of voxels to each of W workers; instructs the worker to compute the correlation between each of these voxels and the rest of
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he  brain in each epoch; instructs the worker to analyze the correlation vectors for 

esult  (i.e., cross-validation accuracy) for each voxel and loads it into memory; and r
he  controller writes the results to disk.

.2. Example application

To show how FCMA works, we used it to analyze a face/scene
ocalizer dataset. We  focused on category-selective object percep-
ion because it is one of the most common and robust domains in
ognitive neuroscience. In particular, GLM and MVPA approaches
ave revealed areas of occipital and temporal cortex that are acti-
ated by objects of particular categories (Kanwisher, 2010; Op de
eeck et al., 2008; Haxby et al., 2001). To examine whether FCMA
an provide added value, we tested whether it emphasizes other,
ess-traditional brain areas as being category selective in terms of
heir patterns of correlation. Our hope is that releasing the soft-
are toolbox will prompt additional applications of FCMA, but this

xample illustrates the different steps involved and the variety of
esults that can be obtained.

.2.1. Hardware
For performance benchmarking and the example application,

e used a compute cluster with 66 nodes. Each node was equipped
ith two Intel Xeon E5430 processors, 16 GB memory, and 4 TB

ocal disk, and could run eight threads simultaneously at peak.

.2.2. Dataset
We  used fMRI data from 18 subjects (localizer data from Turk-

rowne et al., 2012), who viewed sequences of face and scene
mages in alternating blocks, while performing male/female and
ndoor/outdoor judgment tasks, respectively. Each subject com-
leted one functional run that contained 12 blocks (six involving
aces and six involving scenes). Each block contained 12 images
rom one category and lasted for 18 s, followed by blank fixation

eriod of 12 s between blocks.

Data were acquired using a Siemens 3T Allegra scanner,
ith a T2*-weighted EPI sequence: volumes = 224, slices = 26,

R = 1500 ms,  TE = 28 ms,  matrix = 64, field of view = 224 mm,  flip
oxel across epochs with MVPA and supplied condition labels; collects the analysis
s to the first step to assign another subset of voxels until there are none left. Finally,

angle = 64◦, and thickness = 5 mm (3.5 × 3.5 × 5 mm3 voxels). Data
were preprocessed prior to FCMA with corrections for head motion
and slice-time acquisition, spatial smoothing (5 mm), and high-
pass temporal filtering (128 s period). Brains were anatomically
aligned to MNI  space using standard linear registration methods
(Jenkinson et al., 2002) and masked to remove non-brain voxels.
After alignment, every brain contained 34,470 voxels.

2.2.3. Data preparation
Whole-brain activity and correlation patterns were calculated

for each block. For activity patterns, the BOLD signal in each voxel
was averaged over the 12 timepoints in that block, shifted for-
ward by two TRs to account for the hemodynamic lag and capture
peak response amplitude. We then normalized within subject by
z-scoring these values across blocks within each voxel.

For correlation patterns, the BOLD signal in all pairs of voxels
was correlated over the timecourse of each block. We  used Pear-
son correlation and thus assume that the relationship between
activity in one region and another is linear—a common assump-
tion in fMRI studies of functional connectivity. It remains likely
that meaningful interactions between regions are non-linear, and
thus future development of FCMA will incorporate other more
flexible relationship metrics (Reshef et al., 2011). In pilot testing,
variance during the rise of the hemodynamic response meaning-
fully contributed to correlations and thus the timecourses were
not shifted prior to being correlated. Although a sample size of
12 timepoints for computing correlations is small and leads to
volatile estimates, we reasoned that the classifier would be able
to extract meaningful correlation patterns across training exam-

ples. Any concerns about statistical power work against finding
reliable classification performance. Additional preprocessing steps
(mean-centering, division by root sum of squares) were applied
to each timecourse to optimize correlation computation. The
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Fig. 2. Classification procedure. (a) The preprocessed fMRI data set contains n subjects, each represented with a k voxels by t epochs matrix. (b) For standard MVPA of activity
patterns, vectors are defined for each subject and epoch as the average BOLD signal over time in every voxel (�i). For MVPA of correlation patterns, vectors are defined for
each  subject and epoch as the pairwise correlation of the BOLD signal over time between every voxel and every other voxel (ri,j). (c) The same nested cross-validation pipeline
can  be applied to activity and correlation patterns. The inner loop serves to select features (voxels) for classification: A training set (Si) is divided into m pieces to do an m-fold
cross-validation that identifies the voxels with highest performance. (d) The outer loop is n-fold, with each fold leveraging the selected voxels to train a model on Si and test
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t  on the left-out test set (Ti). This results in a classification accuracy (Pi), which is th

esulting coefficients were Fisher-transformed and normalized
ithin subject by z-scoring across blocks within each voxel pair.

.2.4. Classification
The SVM algorithm was applied to activity and correlation pat-

erns with a leave-one-subject-out nested n-fold cross-validation
pproach (where n = 18 subjects). An inner loop was used for feature
voxel) selection on the training set, while an outer loop used the
hosen voxels to train a final classifier on the training set for cross-
alidation against the test set. The goal of feature selection was  to
utomatically identify voxels whose activity/correlation patterns
istinguish between classes, as well as to reduce the dimensional-

ty of final classifier training. For each training set from the outer
oop, we did an inner leave-one-subject-out m-fold cross validation
or this feature selection (where m = the remaining 17 subjects).
ote that leaving one subject out at a time is not a requirement
f FCMA itself, which can be applied just as easily across trials or
locks within subject. This approach is convenient, however, as the
esulting sample of cross-validation accuracies (one per subject)
an be analyzed statistically treating subject as a random effect.

The feature selection for activity and correlation patterns was

imilar, but differed due to the nature of the data. For activity pat-
erns, we used a searchlight approach (Kriegeskorte et al., 2006).
or every block in the inner-loop training set (m − 1 or 16 sub-
ects × 12 blocks/subject = 192 blocks), we generated a spherical
eraged across folds (P) to quantify overall performance.

pattern of activity surrounding each voxel, made up of the aver-
age activity over that block for each voxel in the sphere. We  then
trained a linear SVM classifier to distinguish these patterns as hav-
ing been obtained from face vs. scene blocks. The cross-validation
test performance on the mth (17th) subject was  assigned to this
voxel, and the process was repeated for all 34,470 voxels. For cor-
relation patterns, the procedure was very similar except in terms
of how the block patterns for each voxel were generated. Rather
than the average pattern of activity of the surrounding voxels, we
used the pairwise correlation of a given voxel with all other voxels,
resulting in a vector of 34,470 coefficients for that voxel for every
block. These vectors were then submitted to the same kind of clas-
sifier to distinguish face vs. scene blocks, and the test performance
was assigned to that voxel. The process was  repeated for all voxels.

This entire process was  repeated m times for the activity
searchlights and correlation vectors for each voxel, with final voxel-
wise classifier performance computed as the average performance
across folds. The k most informative voxels were chosen from these
voxel-wise average classifier performance maps for each type of
classification, to be used for the outer-loop training and test. Specif-
ically, these k voxels were used to generate patterns of activity

and correlation for the full set of m subjects in the training set of
the current outer-loop fold. Activity patterns reflected the aver-
age activity for each block from all selected voxels (i.e., vector of
length k). Correlation patterns consisted of a correlation matrix
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or every block, with the selected voxels in the rows and columns
rearranged into a vector of length k2). These activity and correla-
ion patterns were used to train a linear SVM classifier, which was
hen tested on the nth (18th) subject. To evaluate the robustness
f decoding with respect to the choice of k, the average outer-loop
lassification accuracy across folds was calculated for k = 10, 20, 50,
00, 200, 500, 1000, 2000 (used in main analysis), and 5000 voxels.
andom-effects reliability against chance (50%) was  assessed with

 permutation test over the subject folds.

.2.5. Information mapping
To determine which areas of the brain contributed to successful

lassification, we examined the frequency with which a given voxel
as chosen during feature selection across the n outer-loop folds.

hese n sets of k top voxels were not independent from each other
ecause any two training sets had exactly n − 2 subjects in com-
on. Due to this dependence, binomial or parametric tests were not

ppropriate for assessing the statistical significance of the frequen-
ies. Thus, we used a non-parametric method to simulate the null
istribution. We  independently randomized the spatial location of
oxels in every subject’s preprocessed data, and then repeated the
ame full suite of analyses, selecting the top 2000 voxels in each of
he 18 folds. Since the voxels in all subjects were shuffled, this led
o a null distribution of 34,470 counts of how many times a voxel
ould be chosen in feature selection by chance (Table S1). We  ran

his simulation separately for activity- and correlation-based anal-
ses, and obtained nearly identical results: less than 5% of voxels
ad counts greater than or equal to 8/18 (i.e., p < .05).

This procedure produced a voxel-wise map  of p values based
n the frequencies for activity and correlation, corrected for the
ependence of the training sets. To further correct for multi-
le comparisons across voxels, we used cluster-size thresholding
Forman et al., 1995). The initial cluster-forming threshold for indi-
idual voxels was set at a frequency of 8/18 (p < .05 uncorrected).
or each of 10,000 iterations, the true distribution of frequencies
as randomized over the brain, the cluster-forming threshold was

pplied, and the number of clusters of each possible extent was
ounted. This procedure resulted in a null distribution of cluster
izes (Table S2), with clusters of size eight or more voxels cor-
esponding to a whole-brain corrected threshold of p < .05. We
ttempted to correct for spatial autocorrelation by estimating the
moothness of the true frequency map  and applying a matched
aussian kernel after the randomization step of each iteration.
owever, due to the strength of the results and the relative sparse-
ess of the frequencies, no amount of smoothing resulted in a more
onservative cluster-size threshold. Thus, we retained the cluster-
ize threshold of eight voxels.

.2.6. Vector change analysis
To examine how the pattern of correlations changed across

ategories (based on the results of feature selection), we isolated
ignificant clusters in medial prefrontal cortex (mPFC; 81 voxels)
nd occipital/temporal cortex (1337 “visual” voxels). For each block
nd subject, we computed the correlation between every mPFC
oxel and every visual voxel (81 × 1337 pairs). This matrix can be
e-represented as 81 mPFC correlation vectors of length 1337 (one
or each mPFC voxel) and 1337 visual vectors of length 81 for each
lock (one for each visual voxel). These two sets of vectors were
hen averaged across blocks from the same category, resulting in 81
ace mPFC vectors, 81 scene mPFC vectors, 1337 face visual vectors,
nd 1337 scene visual vectors.

We calculated two metrics by comparing the face and scene vec-

ors for a given mPFC or visual voxel: cosine distance (an estimate of
he angle change) and L2-norm difference (an estimate of the length
hange). Since it is unknown how these metrics are distributed, we
rst normalized them with respect to their own  null distribution.
e Methods 251 (2015) 108–119 113

Specifically, we randomized the block labels 1000 times within
each subject, calculating the cosine distance and L2-norm differ-
ence for every voxel in each iteration. This generated null distribu-
tions against which the true values could be converted to z scores.
For each subject, the 81 z values for mPFC voxels and the 1337 z
values for visual voxels for each of cosine distance and L2-norm
difference were averaged within region to produce four values:
average mPFC angle change, average visual angle change, aver-
age mPFC length change, and average visual length change. These
values were compared across subjects with permutation tests.

2.2.7. FFA/PPA analysis
We  tested whether the mPFC pattern of correlations across face

and scene categories could be explained by selective coupling with
the FFA and PPA, respectively. To define these areas, we  applied a
standard univariate GLM to the data with FSL, modeling face and
scene blocks with a canonical hemodynamic response function.
The resulting parameter estimates were contrasted within sub-
ject, and the reliability of these contrasts was assessed at the group
level with a higher-level FLAME mixed-effects model. We  identi-
fied the FFA and PPA bilaterally by finding the peak face and scene
selective voxel in the group analysis within the posterior lateral
fusiform gyrus and the collateral sulcus/parahippocampal gyrus,
respectively. We  intersected a 10-mm radius sphere around these
peaks with the visual voxels obtained from FCMA, obtaining 13 FFA
voxels and 89 PPA voxels.

We  then examined the average correlation between these
voxels and mPFC, and tested reliability across subjects with per-
mutation tests. Although these correlations were already known
to differ between categories, the purpose of this analysis was
to characterize the specific pattern of the correlations. Indeed,
there are many patterns of correlations that could support the
binary classification performed by FCMA. What we obtained was
contrary to our initial hypothesis—and to what was suggested
from prior findings (Al-Aidroos et al., 2012; Chadick and Gazzaley,
2011)—demonstrating the potential for FCMA to reveal unexpected
findings.

2.2.8. Background connectivity analysis
The analyses above were applied to data that had only been

preprocessed. To eliminate the potential confounding effects of
stimulus-evoked responses on task-related functional connectiv-
ity, we  repeated all analyses on residualized data from which these
evoked responses had been removed. This background connectiv-
ity approach, which we have used previously (Al-Aidroos et al.,
2012), contained four steps: (1) preprocessing the data; (2) fitting
a “nuisance” GLM to the preprocessed data with regressors of no
interest for 15 nuisance variables (six degrees of freedom for head
motion, four seeds in bilateral anterior and posterior ventricles, four
seeds in bilateral anterior and posterior white matter, global mean
signal), as is done in analyses of resting connectivity; (3) fitting
a finite impulse response (FIR) model to the residuals of the nui-
sance GLM with separate candlestick functions for each condition
and timepoint in the block, to capture stimulus-evoked responses
in a data-driven and voxel-specific manner; and (4) applying FCMA
in the same way as for the preprocessed data, but to the residuals
of the FIR model.

2.2.9. Seed-based analysis
To examine whether the FCMA results would be evident with

a standard seed-based approach, we constructed a GLM with
two regressors based on FFA and PPA activity: (1) the “selective”

regressor consisted of the concatenated timeseries of activity from
FFA in face blocks and PPA in scene blocks, and (2) the “non-
selective” regressor consisted of the concatenated timeseries of
activity from PPA in face blocks and from FFA in scene blocks. The
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Table 1
Benchmark times for different optimizations in minutes. Each time refers to the training and testing of an SVM classifier model, in which one subject is held out for the final
test,  and cross-validation is performed among the remaining training subjects to select voxels whose correlations are used for the final test classifier. The baseline code was
written in C++ using GotoBLAS library and LibSVM in single-thread mode. Improved linear SVM code pre-computed the linear kernel matrices used in LibSVM. Multi-core
parallelism code used OpenMP to launch eight shared memory threads in one cluster node to run the program in parallel. Multi-node parallelism code runs MPI  to coordinate
66  cluster nodes to work together in controller-worker mode. Long elapsed times were estimated via extrapolation.

Optimization Running time in minutes

One voxel, one test
subject (34,470
correlations)

All voxels, one test
subject (34,470
voxels)

All voxels, all test
subjects (18
subjects)

Performance
speedup (x
Baseline)

Baseline 1.5 51,705 930,528 –
Improved linear SVM 0.03 1174 21,138 44
Multi-core parallelism (eight cores) 0.03a 201 3618 257
Multi-node parallelism (66 nodes) 0.03a 4 72.3 12,855
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a Note that the benefit of parallelism is only realized when multiple voxels’ cor
ingle thread is recruited for analyses restricted to one voxel.

esulting parameter estimates were contrasted (selective > non-
elective), to identify voxels that correlated more strongly with
ategory-selective regions during blocks of their preferred stimuli.
tatistical significance was calculated across subjects using a ran-
omization test and corrected for multiple comparisons with
hreshold-free cluster enhancement. This analysis was applied to
oth the preprocessed data and residualized data from the back-
round connectivity analysis.

. Results

.1. Analysis benchmarks

FCMA accelerates the unbiased, exhaustive analysis of func-
ional connectivity by optimizing correlation and machine learning
lgorithms and by leveraging multi-thread parallelism within
odes and multi-node parallelism across nodes. For each step of
ptimization, the performance of FCMA when applied to the exam-
le dataset with the sample hardware is provided in Table 1.

.2. Classification performance

Eighteen subjects viewed sequences of faces or scenes in sep-
rate, recurring blocks of trials. For each subject and block, we
dentified two types of brain patterns: (1) the pattern of average
ctivity over time for every voxel (basis of standard activity-based
VPA), and (2) the pattern of correlations over time of every voxel
ith every other voxel (basis of FCMA). We  classified these pat-

erns of activity and correlation from face vs. scene blocks with
 linear SVM. A feature-selection procedure identified the 2000
ost informative voxels. These voxels were used to generate final

ctivity and correlation patterns for each block, which were in turn
sed to estimate overall classification performance. Having con-
ucted feature selection and classifier training on n − 1 subjects, we
ested the ability of the classifier to predict block category in the
emaining subject. For activity patterns, average cross-validation
ccuracy was 98% (p = 2.0 × 10−6). This is consistent with previ-
us findings (Haxby et al., 2001). For correlation patterns, average
ross-validation accuracy was 95% (p = 7.0 × 10−6). Although less
ccurate in relative terms, the absolute level was  nevertheless
uite high and the correlation analysis started with lower statisti-
al power in two ways. First, the unit of measurement was  a single
orrelation value per block, compared to the multiple repeated
amples of activity per block that went into the average activity.
econd, the correlation-based classifier involved 4,000,000 inputs

2000 selected voxels squared), compared to 2000 inputs for the
ctivity-based classifier, which increases the risk of overfitting.
inally, for both activity and correlation classifiers, performance
as robust over a range of features (Fig. S1).
n matrices are analyzed conjointly and can take advantage of multi-threading; a

3.3. Information mapping

The similarity in performance for the two  classifiers raises the
question: Are they identifying the same neural mechanisms? To
address this issue, we  examined the frequency with which each
voxel was  chosen during both types of feature selection. That is, we
summed the number of times that each voxel was chosen across
outer-loop classification folds and assessed the reliability of these
counts using a non-parametric procedure that accounted for the
inherent overlap in the training sets. This produced voxel-wise
maps of significance values for these counts, which were corrected
for multiple comparisons.

Consistent with many previous findings, classification of activity
patterns for faces and scenes was supported by regions of ven-
tral temporal cortex, as well as known category-selective areas of
dorsal occipital and retrosplenial cortex (Fig. 3a). Classification of
correlation patterns was partly supported by overlapping regions.
Additionally, however, they were joined by an area of mPFC, as well
as by part of early visual cortex and the precuneus (Fig. 3b).

3.4. Vector change analysis

The involvement of mPFC in the classification of correlation but
not activity patterns fits the description of the hypothetical region X
in the Introduction. This area may  participate in category-selective
object perception not in terms of its pattern of activity, but rather
in terms of its pattern of correlation. There are two explanations
for how this could arise (Fig. 4): by mPFC interacting preferentially
with different areas for different categories (“switching” hypoth-
esis), or by mPFC interacting with the same areas to a greater or
lesser degree based on category (“strength” hypothesis).

We tested these two possibilities, which are not mutually exclu-
sive, by examining the correlations between mPFC and the 1337
voxels in occipital and temporal cortex that showed significant cat-
egory selectivity in the correlation-based analysis. For any given
block, the pattern of these mPFC correlations can be considered
a point in a 1337-dimensional space, or a vector whose angle
and length can be defined relative to the origin. According to the
switching hypothesis, mPFC should be correlated with a subset
of occipitotemporal voxels for one category and a different sub-
set for the other category. Therefore, certain dimensions will have
higher values for one category and other dimensions will have
higher values for the other, which can be quantified as the dif-
ference in the angle of the vectors for each category. In contrast,

the strength hypothesis predicts that the mPFC should always be
correlated with the same subset of occipitotemporal voxels, just to
different degrees. Therefore, the same dimensions will have higher
values for one category and lower values for the other, which can
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Fig. 3. (a) Activity-based analysis. Sagittal, coronal, and axial sections depicting voxels in which surrounding activity led to reliable classification of object category. These
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oxels  were found in areas of ventral temporal, dorsal occipital, and retrosplenial cor
ith  all other voxels led to reliable classification of object category. These voxels w

isual  cortex, and precuneus. The color of each voxel reflects the frequency with whi

e quantified as the difference in the length of the vectors for each
ategory.

We defined these correlation vectors for every subject, block,
nd mPFC voxel. We  then averaged them, within subject, over all
PFC voxels and over all blocks of the same category. This resulted

n two correlation vectors for each subject, one for face blocks and
he other for scene blocks. From these vectors, we extracted two

etrics: angle change (cosine distance) and length change (differ-
nce in L2 norms). We  normalized these values within subject with
espect to their null distributions (obtained by shuffling the block
abels) and then tested reliability across subjects.
In support of the switching hypothesis, there was a signifi-
ant change in angle (p = 1.6 × 10−4) of the mPFC vectors for face
nd scene blocks. Although length also changed reliably (p = .02),
he angle change in mPFC was significantly stronger than the

ig. 4. Analysis of mPFC correlation vectors. For each subject and category, a vector of th
emporal  cortex was computed. A 2-D projection of these vectors for each subject is depic
he  same subject was placed symmetrically around the vertical meridian, and the angle b
endered proportional to the group mean.
) Correlation-based analysis. The same sections depicting voxels whose correlations
und in areas overlapping with the activity-based analysis, but also in mPFC, early
as selected across cross-validation folds. P = posterior, A = anterior, R = right, L = left.

length change (p = .002). Finally, the angle change in mPFC was
greater than when the analysis was inverted, to examine the change
in the angle of occipital and temporal correlation vectors with
mPFC (p = .02). This finding suggests that some of mPFC’s cate-
gory selectivity derives from interactions with different voxels for
each category. It also provides an example of how FCMA not only
identifies task-related interactions between brain regions, but also
permits more in-depth analysis of the nature of these interactions.

3.5. Relationship of correlations to activity-based category
selectivity
To further characterize the interactions between mPFC and pos-
terior areas, we  tested a natural hypothesis: that mPFC correlates
with face-selective regions (e.g., fusiform face area, FFA) during

e average correlation between mPFC and each of the 1337 voxels in occipital and
ted in gray, with the average across subjects in color. Each vector pair belonging to
etween them was the real angle in the high-dimensional space. The lengths were
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Fig. 5. (a) The average correlations of FFA and PPA voxels with mPFC plotted as a function of block type. (b) The average evoked BOLD activity of FFA, PPA, and mPFC voxels
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lotted as a function of block type. The FFA and PPA voxels were selected as face- 

attern  of activity, which we  display here only for visualization purposes.

ace blocks, and with scene-selective regions (e.g., parahippocam-
al place area, PPA) during scene blocks. We  did this by defining FFA
nd PPA voxels with a traditional univariate GLM of average activity
Kanwisher, 2010), and then examining the correlations between
hese voxels and mPFC for each subject (Fig. 5a).

The pattern of results across subjects was different than would
e expected based on the category selectivity of FFA and PPA. There
as no correlation on average between mPFC and FFA during face

locks (p = .15) or between mPFC and PPA during scene blocks
p = .33). Indeed, the only reliable correlation was  between mPFC
nd PPA during face blocks (p = 2.8 × 10−5), which was also stronger
han the mPFC-FFA correlation in these blocks (p = 8.3 × 10−4). The

PFC-FFA correlation during scene blocks was not reliable (p = .24).
ore generally, mPFC was not obtained in a standard seed-based
hole-brain analysis of functional connectivity with FFA and PPA

Fig. S3a), highlighting the potential added value of FCMA.
Considering these correlations in the context of the average

ctivity of FFA, PPA, and mPFC (Fig. 5b), helps rule out alterna-
ive explanations for the category-selective correlations in mPFC
ased on evoked activity. For example, if mPFC responded to both
aces and scenes, and FFA and PPA responded selectively to faces
nd scenes, respectively, then greater mPFC-FFA correlations for
aces and mPFC-PPA correlations for scenes would be spurious
nd unrelated to their interactions. The actual evoked activity and
orrelations in these regions are inconsistent with this kind of
xplanation in several ways: (1) FFA showed a stronger response
han PPA to faces but a weaker correlation with mPFC; (2) FFA
trongly responded to faces above baseline but did not correlate
ith mPFC; (3) mPFC did not respond to faces above baseline but

trongly correlated with PPA; and (4) PPA strongly responded to
cenes above baseline and mPFC strongly responded to scenes

elow baseline but there was no (negative) correlation between
PA and mPFC. Moreover, when we calculated correlations over
he average timecourses in Fig. 5b (rather than the concatenated
aw timeseries, as used to generate Fig. 5a), FFA was again less
ene-selective, respectively, using a GLM. They were thus guaranteed to show this

correlated with mPFC than PPA in face blocks (p = 3.1 × 10−4),
despite its greater activity.

This complex pattern of correlations between mPFC, FFA, and
PPA can be visualized over all selected voxels in visual cortex using
a circular graph (Fig. 6). One possible explanation for the overall
trends in this graph is that mPFC is more focused on face infor-
mation and thus sends excitatory input to visual cortex during
face blocks (leading to positive correlations) and inhibitory input
to visual cortex during scene blocks (leading to negative correla-
tions). This occurred over a broad swath of visual cortex, which
would be plausible if face- and scene-selective neurons were widely
distributed (Haxby et al., 2001). Regardless, what determined the
nature of mPFC correlations was the perceptual process being
engaged rather than the activity-based identity of the target region
(e.g., mPFC was strongly correlated with PPA on face blocks).

This result was unexpected and will require further study. How-
ever, it at least provides a demonstration that findings from FCMA
need not align with those of seed-based analyses, which in this case
would have assumed that category-selective correlations would
align with category-selective activity.

3.6. Background connectivity analysis

Although the mPFC correlation results are difficult to explain
by way  of the pattern of evoked responses in mPFC, FFA, and
PPA, a more general concern about the contribution of evoked
responses to correlation-based classification remains. In particu-
lar, a voxel that responds during both face and scene blocks would
be more correlated with other face-responsive voxels during face
blocks and with other scene-responsive voxels during scene blocks.
This voxel’s category-selective correlations would thus be spuri-

ous, reflecting shared responses to a common influence rather than
intrinsic interactions. If the successful correlation-based classifica-
tion we observed reflects only spurious correlations, then removing
such evoked responses from the data should result in chance-level
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Fig. 6. mPFC correlation patterns for face and scene blocks. Each point on the circle represents a voxel, with mPFC voxels shown in black and visual voxels arranged clockwise
according to their activity-based selectivity, from face (green) to scene (purple). Links are drawn for correlations between pairs of voxels that were reliably positive (red) or
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egative  (blue) in a one-sample t-test across subjects. The surrounding histogram r
olds  (as in Fig. 3). Created with the Circos graphical tool (Krzywinski et al., 2009).

ecoding. We  tested this possibility using background connectivity
nalysis (Al-Aidroos et al., 2012), in which we scrubbed the data of
voked responses prior to applying FCMA.

As a check that this procedure worked, we  re-ran activity-

ased classification, which previously produced 98% accuracy, and
btained chance performance (Fig. S2), with no voxels reliably
elected (Fig. 7a). The critical question was whether FCMA would
till be able to classify object category from correlations after

ig. 7. Sagittal, coronal, and axial sections depicting voxels whose (a) surrounding activit
lassification of object category in residuals scrubbed of evoked responses. The color of 

olds.  P = posterior, A = anterior, R = right, L = left.
s the frequency (8–18) with which each voxel was selected across cross-validation

evoked responses were removed. Indeed, cross-validation accuracy
was still reliably above chance (p = .002). Moreover, overlapping
mPFC and precuneus regions were obtained (Fig. 7b). These regions
were again not obtained in a seed-based analysis of the residualized

data (Fig. S3b).

Unlike mPFC and precuneus, early visual cortex was no longer
observed. Thus, we cannot rule out the possibility that the category-
selective correlations in this region were a byproduct of evoked

y patterns in a searchlight, and (b) correlations with all other voxels led to reliable
each voxel reflects the frequency with which it was selected over crossvalidation
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esponses. This point extends to later visual areas in ventral tem-
oral cortex, dorsal occipital cortex, and retrosplenial cortex as
ell, which were robust in the original analysis but much weaker

n the background connectivity analysis. These findings indicate
hat parts of frontal and parietal cortices may  fit the profile of
egions whose correlations carry unique information, beyond what
s reflected in activity.

. Discussion

FCMA takes advantage of high-performance computing to effi-
iently analyze the full correlation matrix of fMRI data. It deals
racefully with enormous amounts data, optimally splitting and
cheduling problems based on the latest techniques in large-scale
omputing and minimizing the need for slow data transfer by man-
ging memory intelligently during online analysis. Beyond flexible
arallelization, FCMA accelerates analysis by improving standard
lgorithms for correlation and classification.

As an example of how FCMA might produce findings that are less
pparent with existing methods, applying it to a face/scene dataset
evealed the involvement of mPFC and precuneus in category-
elective object perception. After controlling for evoked responses,
CMA emphasized these regions more than the occipital and tem-
oral regions typically linked to object perception. The mPFC has
reviously been implicated in the perception of social and emo-
ional information (Martin and Weisberg, 2003; Sabatinelli et al.,
011), including self-concept, attitudes, and mentalizing (Mitchell,
009). As an important social stimulus, faces have also been shown
o elicit activity in mPFC (Allison et al., 1999; Kuhl et al., 2012).
lthough we did not obtain mPFC in our whole-brain activity-based
lassification, and the category selectivity of mPFC correlations per-
isted despite regressing out average activity, the mPFC may  play

 role in modulating face processing in ways that can manifest in
oth local activity and long-range correlations. This is consistent
ith our finding that mPFC showed robust positive correlations
ith visual cortex (both face- and scene-preferring voxels) during

ace but not scene blocks.
Though applied to voxel pairs in fMRI, FCMA could help uncover

elationships between variables across a range of applications
Reshef et al., 2011). For instance, our example application involved
he autocorrelation of one dataset, but two or more datasets (e.g.,
ifferent temporal offsets, regions, or brains) could be submitted
o FCMA, for unbiased analysis of cross-correlations. Moreover,
lthough developed to work efficiently at the scale individual vox-
ls, FCMA also works with any larger spatial unit of measurement
hat reduces the problem size, such as anatomical (Wang et al.,
009) or functional (Power et al., 2011) parcellations. Finally, differ-
nt classifier algorithms could be specified, and any division of the
ata into training and test sets is possible (e.g., within rather than
etween subjects). By releasing our code, we hope that researchers
ill explore these and other avenues, to help further evaluate

he utility of this approach. Ultimately, FCMA complements other
pproaches for the analysis of functional connectivity, helping iden-
ify task-related correlations in an unbiased manner, and providing

 high-performance platform for applying machine learning tech-
iques to correlational data.
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