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Neural Differentiation of Incorrectly Predicted Memories
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When an item is predicted in a particular context but the prediction is violated, memory for that item is weakened (Kim et al., 2014). Here,
we explore what happens when such previously mispredicted items are later reencountered. According to prior neural network simula-
tions, this sequence of events—misprediction and subsequent restudy—should lead to differentiation of the item’s neural representa-
tion from the previous context (on which the misprediction was based). Specifically, misprediction weakens connections in the
representation to features shared with the previous context and restudy allows new features to be incorporated into the representation
that are not shared with the previous context. This cycle of misprediction and restudy should have the net effect of moving the item’s
neural representation away from the neural representation of the previous context. We tested this hypothesis using human fMRI by
tracking changes in item-specific BOLD activity patterns in the hippocampus, a key structure for representing memories and generating
predictions. In left CA2/3/DG, we found greater neural differentiation for items that were repeatedly mispredicted and restudied com-
pared with items from a control condition that was identical except without misprediction. We also measured prediction strength in a
trial-by-trial fashion and found that greater misprediction for an item led to more differentiation, further supporting our hypothesis.
Therefore, the consequences of prediction error go beyond memory weakening. If the mispredicted item is restudied, the brain adaptively
differentiates its memory representation to improve the accuracy of subsequent predictions and to shield it from further weakening.
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Introduction
When faced with a familiar situation, we can often predict who or
what will appear. What happens to the memories supporting
these predictions when they turn out to be wrong? We previously
found that incorrect prediction of an item in a familiar context
leads to worse subsequent memory for that item (Kim et al.,
2014). Through this process, the brain might prune memories
that correspond to changed or unstable aspects of the environ-
ment. However, an item that is irrelevant in one situation might

later become relevant in another situation. In this case, the pre-
viously weakened memory needs to regain its mnemonic
strength. How does the brain accomplish this goal? Based on our
previous network modeling work (Norman et al., 2006, 2007)
and empirical findings (Hulbert and Norman, 2015), we propose
that the brain resolves this by adaptively differentiating the mem-
ory from its previous context.

The model’s predictions are illustrated in Figure 1. Consider
two items, A and B, that have been paired with each other previ-
ously such that the appearance of A leads to a prediction of B.
However, on this particular trial, B does not appear. Memory A is
strongly activated (because it was just shown) and memory B is
moderately activated (because it is being predicted from mem-
ory). A key postulate in the model is that moderate activation
weakens connections from other, strongly activated features
(Norman et al., 2006, 2007). Therefore, connections from the
strongly activated features of A to the moderately activated fea-
tures of B (those that are not shared with A) are weakened, effec-
tively “shearing” these unique features of B from features shared
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Significance Statement

Competition between overlapping memories leads to weakening of nontarget memories over time, making it easier to access target
memories. However, a nontarget memory in one context might become a target memory in another context. How do such
memories get restrengthened without increasing competition again? Computational models suggest that the brain handles this by
reducing neural connections to the previous context and adding connections to new features that were not part of the previous
context. The result is neural differentiation away from the previous context. Here, we provide support for this theory, using fMRI
to track neural representations of individual memories in the hippocampus and how they change based on learning.
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with A. This weakening of connections within the B representa-
tion is a possible explanation for our previous findings of im-
paired recognition of mispredicted items (Kim et al., 2014).
Crucially, if B is restudied later, then the unique features of B will
be activated, but not features previously shared with A (because
connections to these features were weakened). Instead, activation
will spread to other new features (not previously shared with A)
and connections to these features will be strengthened. This pro-
cess of swapping out shared for unshared features decreases over-
lap between the A and B memories.

Other studies have demonstrated neural differentiation from
learning of interrelated materials (Schapiro et al., 2012; Schlicht-
ing et al., 2015; Favila et al., 2016). The key contribution of the
present work is that we provide a mechanism for differentiation
(described above). Our proposed mechanism leads to two spe-
cific, testable claims that go beyond basic differentiation: First,
the mispredicted item should specifically differentiate from its
prior context (as opposed to becoming generally more distinct
from other items). Second, across items, the degree of mispredic-
tion should relate to the degree of differentiation (insofar as mis-
prediction leads to shearing off of shared features, opening the
door for new features to be acquired).

We tested these two hypotheses in an fMRI study. Observers
were exposed to a continuous sequence of scenes and faces while
performing a cover task. Unbeknownst to them, this sequence
was generated from pairs (e.g., scene A–scene B), creating an
expectation that B will follow A. For some pairs, these expecta-
tions were violated (A was followed by X instead of B). All B items
were subsequently restudied. We hypothesized that mispredic-
tion of B followed by its restudy would lead to differentiation of B
from A compared with a control condition consisting of pairs in
which expectations were not violated. To test this, we used fMRI
and pattern similarity analysis to track changes in neural overlap
between A and B and to track how strongly B was predicted on
violation trials. Our results showed a direct relationship between
competitive dynamics (i.e., misprediction) during learning and
representational change, thereby supporting for our mechanistic
model of memory updating.

Materials and Methods
Participants. Thirty-two adults (19 women, 27 right-handed, mean age
20.1 years) participated for monetary compensation. All had normal or
corrected-to-normal vision and provided informed consent. The Prince-
ton University Institutional Review Board approved the study protocol.

Stimuli. Participants were shown color photographs of indoor
and outdoor scenes �including some from http://cvcl.mit.edu/MM/
sceneCategories.html�, male and female faces �including some from
www.macbrain.org/resources.htm�, and natural and manmade ob-
jects. Stimuli were projected on a screen behind the scanner and
viewed with a mirror on the head coil (subtending 8.8 � 8.8°). Par-
ticipants fixated a black central dot that changed to white when a
response was recorded.

Procedure. The experimental procedure unfolded over 2 d (Fig. 2A).
All phases of the experiment were scanned with fMRI. The first session
consisted of six runs of an incidental encoding task. Participants made
indoor/outdoor judgments for scenes that were presented for most of
trials (92%) and female/male judgments for faces that were presented
occasionally (8%). Unbeknownst to participants, the stimulus sequence
contained scene image pairs (e.g., scene A–scene B). There were 8 new
pairs for each of the 2 conditions (violation and nonviolation) within
each run (8 pairs � 6 runs � 48 pairs in total per condition). The first and
second members of each pair were presented once separately (randomly
intermixed with items from other pairs) before they were ever shown
together in a pair. This allowed us to measure the neural representation
of each item on its own before learning (“prelearning snapshot”) and
uncontaminated by the pair-mate (Schapiro et al., 2012).

There was no explicit distinction between the prelearning snapshots
and the presentation of pairs. After the items in a given pair were shown
separately (to acquire prelearning snapshots), the items were shown as a
pair three times, interleaved with repetitions of other pairs. For pairs
assigned to the violation condition, the three repetitions were followed
by a violation event where the first scene in the pair was followed by a
novel face instead of the paired scene (e.g., scene A–face X); this event was
omitted for nonviolation pairs. Crucially, in both conditions, the B item
was subsequently presented (“restudied”) on its own, following a novel
item in the sequence rather than its previous context A. This cycle of
violation and restudy was repeated once more for the violation pairs—
our modeling work suggested that two cycles would produce more dif-
ferentiation than one—leading to the following overall event sequence
per pair: AB–AB–AB–AX–B–AY–B. There was also a second restudy for
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Figure 1. How interleaved misprediction and restudy lead to differentiation. A and B have been paired previously (AB), but in this instance of A, B does not appear (AX). This unconfirmed
prediction leads to moderate activation of the features of B. According to our theory (Norman et al., 2006, 2007; Hulbert and Norman, 2015), this leads to weakening of connections into these
moderately active features from other, strongly activated features (including features shared with A). If the B item is restudied later after a novel item, activation spreads to new features that were
not formerly activated by A, resulting in strengthening of these connections to new features. This cycle, whereby misprediction of B causes shearing of B features from A features and restudy leads
to acquisition of new features, has the overall effect of differentiating B’s neural representation from A’s neural representation.
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the nonviolation pairs, leading to a sequence that was matched for the
number of exposures to B, but without violation events: AB–AB–AB–
B–B. Importantly, these manipulations were incidental to the primary
task of making categorical judgments and the interleaving of multiple
pairs obscured the pair structure. In a separate behavioral pilot, we en-
couraged participants to report any regularity and none noticed that the
sequence was constructed from repeated pairs. Each trial began with a
blink of the fixation cross to signal an upcoming stimulus, followed by
the stimulus presentation for 1 s and a blank interval of 2 s. There were a
total of 192 trials (32 prelearning, 160 pair sequences) within each run,
which lasted 10 min and 6 s.

The second session occurred the day after the first session (at least
12 h) and consisted of three tasks: postlearning snapshot (two runs),
surprise memory test (two runs), and functional localizer (three runs).
The postlearning snapshots were collected in the same manner as the
prelearning snapshots: all scenes from the first session were shown again,
one at a time, in a random order and with indoor/outdoor judgments. In

the recognition memory test, we presented each participant with all B
scenes from both conditions (48 violation and 48 nonviolation) ran-
domly intermixed with 48 novel scenes. A two-step memory response
was made for each scene (“old” or “new”) and then confidence level
(“sure” or “unsure”). Images remained on the screen until the responses
were made and the next trial began on the first subsequent TR.

The four postlearning and memory runs were interleaved and their
order was counterbalanced across participants (odd participants: mem-
ory run 1, postlearning run 1, postlearning run 2, memory run 2; even
participants: postlearning run 1, memory run 1, memory run 2, postle-
arning run 2). Half of the studied pairs were randomly assigned to mem-
ory run 1 and postlearning run 1 and the other half to memory run 2 and
postlearning run 2. As a result of this design, for half of the B items,
memory was tested before the postlearning snapshot was taken and, for
the other half of B items, the postlearning snapshot was taken before
memory was tested (Fig. 2B). We designed the procedure this way be-
cause we were concerned that testing memory for an item could contam-
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Figure 2. Experimental design and main analyses. A, During incidental encoding, participants performed a categorization task for scenes (indoor/outdoor) and faces (male/female). Before the
main incidental encoding phase, all scene images were presented in a random order so that we could take prelearning snapshots of the neural representations of these images. During the incidental
encoding phase, the trial sequence for the violation condition was constructed from three initial repetitions of AB pairs (AB–AB–AB) and two cycles of violation and restudy trials (AX–B–AY–B),
whereas the violation trials were omitted for the control (nonviolation) condition (AB–AB–AB–B–B). Each individual trial in these sequences was interleaved with trials of other pairs at different
points in their sequences. After the main incidental encoding phase, the same scene images were presented again in a random order, allowing us to take postlearning snapshots of their neural
representations. B, Half of the pairs in the incidental encoding phase were randomly assigned to memory and postlearning run 1 (memory run preceded postlearning run) and the other half to
memory and postlearning run 2 (postlearning run preceded memory run). The order of run 1 and 2 was counterbalanced across participants. C, In left CA2/3/DG, we measured neural differentiation
by computing the similarity of the prelearning snapshot of A and the postlearning snapshot of the corresponding B item in the violation condition versus the control condition. D, We measured
prediction strength in the violation condition by computing the similarity of the prelearning snapshot of B to neural patterns present at the moment of the violation (when X/Y items were presented).
We then computed the correlation between prediction strength and neural differentiation in a trial-by-trial fashion.
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inate the subsequent postlearning snapshot for that item and vice versa.
We wanted some items to get an uncontaminated postlearning snapshot
(before memory was tested). Although behavioral recognition memory
performance was not the focus of this study, we also wanted some items
to get an uncontaminated memory judgment (before the snapshot was
taken). For the analyses focusing on neural differentiation (and related
follow-up analyses), we used only the pairs for which the postlearning
snapshot preceded the recognition memory test, thereby ensuring that
the postlearning snapshot would not be affected by any learning that
occurred as a result of recognition memory test.

After the postlearning and memory runs, participants completed three
runs of a functional localizer. Each run contained 15 blocks, with five
blocks from each of three categories: faces, scenes, and objects. Partici-
pants judged faces as male or female, scenes as indoor or outdoor, and
objects as manmade or natural. Each stimulus was presented for 500 ms,
followed by a blank interval of 1000 ms. There were 10 trials per block
and each 15 s block was followed by 15 s of fixation, treated as a rest
category. The duration of each run was 465 s. For the analyses below, we
used only the scene blocks. Specifically, we calculated a “template” activ-
ity pattern for the scene category from the scene blocks; this template was
later used to evaluate whether our results were item specific.

Data acquisition. The experiment was programmed in MATLAB using
the Psychophysics Toolbox �http://psychtoolbox.org�. MRI data were
acquired with a 3T MRI scanner (Siemens Prisma) with a 64-channel
head coil. Functional scans came from a T2*-weighted multiband EPI
sequence (TR � 1.5 s, TE � 39 ms, 128 � 128 matrix, voxel size �
1.5 mm iso, 192 mm field of view, flip angle � 50°, acceleration factor 4,
shift 3), with 52 oblique axial slices (transverse to the long axis of the
hippocampus) acquired in an interleaved order. These slices covered a
partial volume encompassing the temporal and occipital lobes, which
allowed us to maximize spatial and temporal resolution over hippocam-
pal subfields. A whole-brain T1 MPRAGE image and a coplanar T1
FLASH image were acquired for registration to other participants. Two
T2 TSE images were acquired for probabilistic segmentation of hip-
pocampal subfields (54 slices perpendicular to the long axis of the hip-
pocampus; 0.44 � 0.44 mm in-plane, 1.8 mm thick). A field map was
acquired to correct for B0 inhomogeneity.

Regions of interest (ROIs). This study involves rapidly learning new,
arbitrary associations between stimuli. Because the hippocampus sup-
ports the encoding and retrieval of such memories (Davachi, 2006; Nor-
man and O’Reilly, 2003; Schapiro et al., 2016), we expected that
representational changes would occur in the hippocampus. Based on a
previous study of neural differentiation (Hulbert and Norman, 2015), we
focused specifically on the left hippocampus. Within the hippocampus,
we were primarily interested in the CA3 and dentate gyrus (DG) subfields
because they are core storage sites for episodic memories and generate
predictions via pattern completion (Hindy et al., 2016).

Hippocampal segmentation. Subfields of the hippocampus (CA1 and
CA2/3/DG) were defined probabilistically in MNI space based on a da-
tabase of manual hippocampal segmentations from a separate set of 24
participants. Manual segmentations were created on T2-weighted TSE
images using anatomical landmarks (Duvernoy, 2005; Carr et al., 2010;
Aly and Turk-Browne, 2016) and then registered to an MNI template.
Voxels in the MNI template were assigned subfield labels if the probabil-
ity was �0.5. Nonlinear registration (FNIRT; Andersson et al., 2007) was
used to register each participant’s high-resolution MPRAGE to this
probabilistic label atlas. Subfields were extracted separately from each
hemisphere and merged for bilateral analyses.

Preprocessing. fMRI data were preprocessed with FSL �http://fsl.fmrib.
ox.ac.uk�. Functional scans were corrected for slice acquisition time and
head motion, high-pass filtered (128 s period cutoff), and aligned to the
middle volume within each run. As a second alignment step, all prepro-
cessed images in the first session were aligned to the first volume of the
first functional run. Functional scans from the second session were
aligned to the same volume based on first aligning the MPRAGE scans
across sessions.

Measuring differentiation. For our initial analysis of overall differenti-
ation, we measured how much B’s neural representation after learning
moved away from the original representation of A and whether this

differed for violation and nonviolation pairs. Specifically, we measured
the Pearson correlation between the prelearning snapshot of A and the
postlearning snapshot of B and then transformed it to Fisher’s z (Fig. 2B).
These snapshots were defined by the spatial pattern of activity elicited by
each item in a particular ROI (e.g., left CA2/3/DG) at the peak of the
hemodynamic response (4.5 s after image onset). This approach differs
slightly from previous studies of representational change that used sim-
ilar neural snapshot methods (Schapiro et al., 2012; Favila et al., 2016).
For example, Favila et al. (2016) measured neural overlap between com-
peting items within a postlearning phase relative to noncompeting con-
trol items. Such an approach was possible because there was no difference
between items in that phase other than their learning history. However,
in our study, A in the violation condition was presented two times more
than A in the nonviolation condition (because of AX and AY violation
trials), so any comparison between violation and nonviolation condi-
tions that includes the postlearning snapshot of A is confounded by item
frequency. Therefore, we used the prelearning snapshot of A (before any
difference between conditions) as the baseline for representational
change.

Our hypothesis posits that differentiation effects should be item spe-
cific. Weakening of connections between the shared features of A/B and
the unique features of B (as a result of misprediction) allows for the
subsequent addition of new features to B when it is restudied and this
leads to an overall decrease in neural overlap between A and B. In other
words, it is important for our hypothesis that B become more distinct
from A specifically, not just generically more distinct from other items.
The basic measure of differentiation above is consistent with both possi-
bilities, so we performed an additional randomization analysis to verify
item specificity: We scrambled the pair assignments of A and B 1000
times within each condition and recalculated neural differentiation. That
is, if Ai and Bi indicate that these items were from the same pair (i), the
original analysis involves calculating differentiation between A1 and B1,
A2 and B2, A3 and B3, etc., whereas a given permutation in the random-
ization test might compare A1 and B7, A2 and B4, A3 and B2, etc. If
differentiation occurs in a generic sense, then the A items are inter-
changeable and the original effect will not differ from the permuted
distribution. If, as predicted by our model, differentiation is item specific,
the original magnitude of differentiation should be larger than the per-
muted distribution. For statistical analysis, within each participant, we
measured the difference in pattern similarity of prelearning A to postle-
arning B between the violation and nonviolation conditions for both the
correct pairing and the permuted pairings and computed the z-score of
the true difference relative to the mean and SD of 1000 permuted differ-
ences. We then examined the reliability of these z-scores across partici-
pants with a one-sample t test against zero.

Relating prediction to differentiation. Beyond showing item-specific
neural differentiation, a key goal of our study is to provide an explanation
for how it arises, as a result of misprediction. The violation and nonvio-
lation conditions only differed in the presence of violation trials that
allowed for misprediction; therefore, any difference in overlap between
these conditions (as captured in the differentiation measure described
above) can be attributed to misprediction. Nevertheless, we sought
stronger and more continuous evidence by attempting to relate, on a
trial-by-trial basis, the amount of prediction on violation trials to the
amount of subsequent differentiation. This analysis was performed only
for the violation condition because there were no violation trials in the
nonviolation condition. To measure prediction on violation trials, we
calculated the amount of evidence for B during the presentation of un-
expected items X and Y (i.e., the items that appeared after A, when B
should have been presented). Specifically, we measured pattern similarity
between the prelearning snapshot of B (not used to calculate differenti-
ation) and the pattern of activity evoked by both X and Y events and then
averaged these two similarities to provide a single index of prediction for
each AB pair. Across pairs, we then calculated the correlation of this
prediction score with the pair-specific neural differentiation effect within
participant and then examined its reliability at the group level using a
one-sample t test.

Again, our hypothesis about a relationship between prediction
strength and differentiation is item-specific; the activation of B in partic-
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ular is what induces competition with, and differentiation from, A. How-
ever, the analysis above does not guarantee that the correlation is item-
specific. Pattern similarity between the prelearning snapshot of B and
X/Y could reflect prediction of item-specific features of B or more generic
categorical features of B shared across items (i.e., predicting that a scene
will appear, without specifying the scene). We conducted two further
analyses to address this. First, we performed the same type of random-
ization test used above for the main effect of differentiation. Specifically,
if prediction reflects generic scene activation, then the prelearning snap-
shots of different B items should be interchangeable when calculating
pattern similarity with X and Y. Therefore, we scrambled the original
pairings of presnapshot B and X/Y 1000 times, recalculated their pattern
similarity, and then recomputed the prediction– differentiation relation-
ship. For example, if the original prediction scores were derived by cor-
relating pre-B1 with X1/Y1 (where X1 and Y1 followed A1) and the original
differentiation scores were derived by correlating pre-A1 with post-B1, a
permutation might involve recomputing the prediction scores (compar-
ing pre-B7 to X1/Y1, etc.) but keeping the differentiation scores the same;
the recomputed prediction scores were then correlated with the differ-
entiation scores, yielding a new (null) value for the prediction– differen-
tiation relationship. As before, a z-score for the original prediction–
differentiation relationship was calculated relative to the permuted
distribution for this relationship within participant and these z-scores
were assessed for reliability with a one-sample t test across participants.
According to our hypothesis (but not a generic scene prediction ac-
count), permuting the items in this way should abolish the relationship
between prediction and differentiation.

Second, we used regression to remove generic category-level informa-
tion from the activity patterns before calculating pattern similarity. Spe-
cifically, we defined a template activity pattern for the scene category by
averaging over the many scene images in the localizer; we then regressed
this template separately from each of the patterns used for this analysis
(i.e., we scaled the scene template to maximize fit to the observed pattern
and then took the residuals). By definition, the residual patterns after this
regression are orthogonal to the scene template, thereby reducing the
possibility that generic scene prediction drove the prediction score. As
the final step, we repeated the original prediction– differentiation analy-
sis with these residuals. According to our hypothesis, the relationship
should be preserved.

Searchlight analysis. Given the nature of learning in our study, we
expected that representational change would occur in the hippocampus,
so we performed the above analyses in hippocampal subfields. However,
it is still possible that other brain regions might show these effects. To
address this issue, we performed an exploratory searchlight analysis.

First, for every subject, we swept a 10.5-mm-voxel cubic searchlight
(radius � 3 voxels, volume � 343 voxels, except along boundaries)
throughout the EPI volume, which covered the temporal and occipital
lobes (see “Data acquisition” section). In each of the searchlights, we
computed neural overlap between the prelearning snapshot of A and the
postlearning snapshot of B for the violation versus nonviolation condi-
tions and then measured the trial-by-trial relationship between the
amount of prediction (on violation trials) and subsequent neural overlap
scores in the violation condition. We assigned the final two outcomes
(i.e., the average neural overlap score and the correlation coefficient
between prediction and neural overlap) to the center voxel of each
searchlight. The two resulting maps were then transformed to the MNI
standard template (2 mm isotropic) and masked to exclude white matter.
We then examined the reliability of each of the two analyses across par-
ticipants by applying a one-sample t test (against zero) for every voxel.
Finally, we selected voxels for which the p-values of both analyses were
�0.05 (uncorrected).

Results
Behavioral performance
Judgments in the categorization cover task (indoor/outdoor for
scenes, male/female for faces) were accurate in general (mean �
90.51%, SD � 10.91; vs chance: t(31) � 21.00, p � 0.001) and did
not differ across the prelearning snapshots, pair sequences, or

postlearning snapshots (F � 1). For the recognition memory test,
we restricted analysis to the B items that were tested before the
postlearning snapshot was taken. Performance was good in gen-
eral, with B items more likely to be endorsed as “old” than new
items (mean A� � 0.84, t(31) � 26.17, p � 0.001). We did not have
a specific expectation for a difference in memory between viola-
tion and nonviolation conditions because neural differentiation
can have opposite effects on the underlying processes that sup-
port recognition memory (see Discussion). Indeed, there was no
difference between conditions (t(31) � 	0.24, p � 0.81). Neural
analyses were restricted to the other B items, the postlearning
snapshots of which were collected before the (potentially con-
taminating) memory test.

Neural differentiation
We examined how much the neural representation of the B items
moved away from their initial A context items by measuring pat-
tern similarity between the postlearning snapshot of B and the
prelearning snapshot of A. We focused initially on left CA2/3/DG
ROI, given prior findings of differentiation (Hulbert and Nor-
man, 2015). We hypothesized that misprediction of B items in the
violation condition would reduce subsequent neural overlap with
A after restudy. Indeed, pattern similarity was lower for pairs
from the violation versus nonviolation conditions (t(31) � 	2.82,
p � 0.008; Fig. 3A). We conducted additional exploratory analy-
ses outside of the main ROI, in other potentially relevant hip-
pocampal subfields, and in both a bilateral and unilateral
manner: right and bilateral CA2/3/DG and left, right, and bilat-
eral CA1. None of these regions showed a reliable difference be-
tween conditions (right CA2/3/DG: t(31) � 0.69, p � 0.50;
bilateral CA2/3/DG: t(31) � 	1.39, p � 0.17; left CA1: t(31) �
0.31, p � 0.76; bilateral CA1: t(31) � 1.22, p � 0.23) and right CA1
actually showed a trend in the opposite direction from left CA2/
3/DG (t(31) � 1.88, p � 0.07).

Our hypothesis explains this neural differentiation in terms of
swapping out shared features with A for new features of B. There-
fore, the representational change should be specific to B’s rela-
tionship with A and not reflective of increased distinctiveness
from other items in general. We evaluated this possibility by per-
muting the relationship between the prelearning snapshots of A
and the postlearning snapshots of B (Fig. 3B). If neural differen-
tiation is item specific, then this scrambling should eliminate the
difference in pattern similarity between violation and nonviola-
tion conditions. Indeed, consistent with our model, the differen-
tiation effect in left CA2/3/DG was stronger for the correct
AB pairings than the null distribution of permuted pairings
(t(31) � 	2.84, p � 0.008; Fig. 3C).

Relationship between prediction and differentiation
The analysis above relies on the categorical manipulation of con-
dition (violation vs nonviolation) to establish that misprediction
is responsible for differentiation upon restudy. To provide fur-
ther support for this hypothesized mechanism, we conducted
continuous analyses within the violation condition. According to
our model, greater prediction of B during the AX/AY violation
trials induces more weakening of its shared features with A, which
in turn allows for better subsequent acquisition of new features
during restudy of B in a novel context. Accordingly, in left CA2/
3/DG, there should be a negative relationship between the
amount of prediction of B on violation trials (pattern similarity of
X/Y with the prelearning B snapshot) and the strength of neural
overlap for the corresponding pair (pattern similarity between
prelearning A and postlearning B snapshots). Indeed, as shown in
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Figure 4A, there was a reliable negative correlation between these
measures (t(31) � 	2.61, p � 0.01).

As with the differentiation effect, our model also posits that
prediction of B per se is critical because more generic prediction
(e.g., of a scene) would not specifically weaken the features of B.
We evaluated this possibility using two different analyses: First,
we performed a randomization test by permuting the prelearning
B snapshots when calculating prediction during violation trials
(under the null hypothesis that the B items are interchangeable)
and then recomputed the trial-by-trial relationship with differ-
entiation (Fig. 4B). Consistent with item-specific prediction be-
ing the critical ingredient, the relationship between prediction
strength and differentiation was stronger for the original pairings
of B items and violation trials relative to the null distribution

from permuted pairings (t(31) � 	2.42, p � 0.02; Fig. 4C). Sec-
ond, we regressed generic category-level information out of the
prelearning B snapshots and violation trials before calculating
prediction scores (thus attenuating the contribution of non-
item-specific features of B to pattern similarity) and then reran
the analysis. As expected, the negative relationship between pre-
diction and differentiation persisted (t(31) � 	2.47, p � 0.02).

Searchlight results
The above analyses were performed within hippocampal sub-
fields. However, representational changes may have also oc-
curred in other brain regions. To examine this possibility, we
swept a cubic searchlight through a functional volume covering
the temporal and occipital lobes. For each of the searchlights, we
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performed the two main analyses. First, we computed neural
overlap between the prelearning snapshot of A and the postlearn-
ing snapshot of B for the violation versus nonviolation
conditions. Second, we measured the trial-by-trial relationship
between prediction strength (on violation trials) and subsequent
neural overlap scores in the violation condition. We focus on the
two largest clusters (4 and 5 voxels, respectively) that survived
statistical tests for both analyses (p � 0.05 uncorrected; see cap-
tion of Fig. 5 for other smaller clusters). Replicating the main
findings above, we found both a neural differentiation effect (vi-
olation � nonviolation) and a negative relationship between the
amount of prediction and neural overlap in the left hippocampus
(Fig. 5A). Interestingly, the left intracalcarine cortex showed the
opposite pattern: neural overlap was greater for the violation
versus nonviolation condition and prediction strength was posi-
tively correlated with this neural “integration” effect (Fig. 5B).

Ruling out univariate confounds
We have assumed that pattern similarity between A and B reflects
a change in the relationship between the distributed representa-

tions of these items. However, univariate activation can affect
pattern similarity (Coutanche, 2013; Davis and Poldrack, 2013;
Davis et al., 2014; Aly and Turk-Browne, 2016a, 2016b), which
could in principle explain some of our results. For example,
weakened memory of B items in the violation condition might be
expressed as lower activation in the postlearning phase, which
could reduce pattern similarity for these items. This could also
potentially explain the observed negative relationship between
prediction strength and differentiation: greater misprediction
could lead to more weakening, which (due to univariate con-
founds) could show up as lower pattern similarity. These scenar-
ios are unlikely, however, in light of the item specificity of the
differentiation effect. If the differentiation effect were merely due
to reduced activation of B items in the violation condition, then
the same pattern of results should have persisted even after per-
muting the AB pairings.

Several additional results provide further evidence against this
alternative account. First, univariate activation in left CA2/3/DG
did not differ between the violation and nonviolation conditions
during the postlearning phase (t(31) � 	0.55, p � 0.58). Second,
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there was no trial-by-trial relationship between univariate activa-
tion in the postlearning phase and differentiation (t(31) � 0.37,
p � 0.71). Third, the negative relationship between prediction
strength and differentiation persisted after controlling for the
univariate activation level (during the postlearning snapshot
phase) with partial correlation (t(31) � 	2.63, p � 0.01). These
observations are consistent with our interpretation that learning
reflects differentiation of the underlying neural patterns rather
than a change in overall activity.

Discussion
The results of this study extend our prior work showing that
mispredicted memories are weakened (Kim et al., 2014). Here,
we show that restudying a previously mispredicted item leads to
differentiation of its hippocampal representation away from
the prior context. We interpret this finding in terms of the
nonmonotonic plasticity hypothesis (NMPH), which posits a
U-shaped relationship between memory activation and learning.
Low activation has no effect, moderate activation leads to mem-
ory weakening, and high activation leads to memory strengthen-
ing (Norman et al., 2006, 2007). Based on our prior study
exploring effects of misprediction (Kim et al., 2014), we hypoth-
esized that violation trials (where A was not followed by B) would
elicit low-to-moderate levels of activation of the mispredicted B
item, thereby weakening the synaptic connections between the
(strongly activated) A item and the (moderately activated) B
item. If memory is tested at this point, then the model predicts
worse memory for the B item due to these weakened connections,

as observed in Kim et al. (2014). Here, we explored what happens
when the (weakened) B item is subsequently restudied. In this
situation, our theory predicts that, due to the weakened connec-
tions to the shared features of A and B, activation spreads to
new features that were not previously shared with A. These newly
activated features at restudy are subsequently incorporated into
the representation of B. This process of weakening connections to
features (formerly) shared with A on the misprediction trial and
strengthening connections to features not formerly shared with A
(on the restudy trial) has the net result of moving B’s representa-
tion away from A’s representation, thereby differentiating these
patterns.

Our theory generates two additional hypotheses that we
were able to test in the current study. First, neural differentiation
should be competition dependent, with stronger (but still mod-
erate) prediction leading to more competition and greater subse-
quent differentiation. This hypothesis was supported by the
observed negative relationship between prediction strength (at
violation trials) and neural differentiation in left CA2/3/DG. Sec-
ond, neural differentiation should occur with respect to the spe-
cific item that wins the competition and not other items. This
hypothesis was supported by our randomization results, which
showed that differentiation depends on the prediction of the spe-
cific B item that was previously paired with A and that differen-
tiation reflects the neural representation of B specifically moving
away from the neural representation of A, as opposed to becom-
ing uniformly more distinct from other scenes.
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Figure 5. Searchlight results. A, A cluster (4 voxels) in the left hippocampus showed both a main effect of differentiation and a negative relationship between prediction strength and neural
overlap ( p � 0.05). B, A cluster (5 voxels) in the left intracalcarine cortex showed the opposite pattern: pattern similarity between the prelearning snapshot of A and the postlearning snapshot of
B was greater for the violation versus nonviolation condition (neural integration) and prediction strength was positively correlated with neural overlap. Summary of smaller clusters (data not
shown): (1) right intracalcarine cortex (6, 	70, 16; 3 voxels), integration and positive relationship; (2) right precuneus (18, 	60, 22; 2 voxels), differentiation and positive relationship; and (3) right
inferior temporal gyrus (44, 	50, 	12; 2 voxels), integration and negative relationship.
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The NMPH implies that there will be boundary conditions on
our conclusions. In particular, the pattern of results observed
here, an overall differentiation effect with greater prediction as-
sociated with more differentiation, will occur when activation for
mispredicted items is in the low-to-moderate range. Because the
NMPH posits that high activation leads to strengthening, much
stronger predictions during violation trials may strengthen,
rather than weaken, connections between A and unique features
of B. This, in turn, will allow A to activate formerly unique fea-
tures of B, leading to integration (i.e., increased neural overlap of
A and B) instead of differentiation. We plan to test this prediction
in future work by increasing associative strength between paired
items (e.g., via more extensive exposure) or by adopting a more
explicit prediction task (as opposed to the incidental approached
used here).

A few other recent studies have used a similar pre–post “snap-
shot” approach to study differentiation (Schapiro et al., 2012;
Hulbert and Norman, 2015; Schlichting et al., 2015; Favila et al.,
2016). Schapiro et al. (2012) did so in a statistical learning para-
digm, in which the transition probabilities between items varied:
in the strong pair condition, A was always followed by B (transi-
tion probability � 1); in the weak pair condition, A was some-
times followed by B (0.33); and in the shuffled pair condition, A
almost never was followed by B (
0). In CA2/3/DG, from the
prelearning to postlearning phases (in which items were pre-
sented randomly), members of strong pairs showed increased
neural overlap (integration) and members of weak pairs showed
decreased overlap (differentiation), both relative to shuffled
pairs. Hulbert and Norman (2015) used a retrieval practice (Rp)
paradigm with highly similar pictures of animals: Rp� items were
practiced, which should lead related Rp	 items to activate as
competitors; then Rp	 items were restudied. The degree of left
hippocampal differentiation predicted subsequent cued recall
memory success. Favila et al. (2016) showed that linking two
scene stimuli to a shared face associate leads to hippocampal
differentiation of the scenes. Last, Schlichting et al. (2015) used a
similar paradigm exploring the effect of linking two unrelated
objects to a shared associate. They looked at a wide range of
regions and showed differentiation in some regions and integra-
tion in others. They also manipulated whether linked pairs were
trained in a blocked (all AB before any BC) or interleaved (inter-
mixed AB and BC) manner and found that integration was more
prevalent after blocked training.

What is missing from these prior studies is a mechanistic ex-
planation of why differentiation occurs, what determines the size
of the effect, and when and where differentiation versus integra-
tion is observed. We hypothesize that the key mediating variable
is the level of memory activation: moderate activation followed
by restudy leads to differentiation and strong activation leads to
integration. For example, in Schapiro et al. (2012), weak transi-
tion probabilities (0.33) during AB pair learning may induce
moderate levels of prediction of B, leading to differentiation of A
and B. In contrast, higher levels of prediction in the strong pair
condition may lead to the opposite integration effect. Results
from Schlichting et al. (2015) also provide hints regarding our
hypothesis. Specifically, blocked AB study may increase compet-
itor activation during BC learning, tilting the balance toward
integration. Likewise, regional differences in differentiation ver-
sus integration may relate to how tightly activity is controlled: In
regions such as the hippocampus that have sparse activation, it is
harder for related memories to activate strongly, biasing learning
toward differentiation; other regions with less sparse activation
(e.g., in cortex) would be biased toward integration. Our search-

light results showing opposite representational changes in the left
hippocampus (differentiation) and intracalcarine cortex (inte-
gration) are consistent with this speculation, although we plan to
address this point in a more focused and systematic way in future
research. Crucially, none of the above studies measured compet-
itor activation, so they could not test our hypothesis. The main
added value of our study is thus that we establish a link between
competitive dynamics during learning and subsequent represen-
tational change.

Our finding of neural differentiation in left CA2/3/DG is dis-
tinct from the notion of hippocampal pattern separation (Hul-
bert and Norman, 2015). Pattern separation refers to the fact that
the hippocampus automatically assigns distinct representations
to stimuli due to sparse coding in DG and CA3 (Yassa and Stark,
2011). Although this pattern separation process reduces neural
overlap in the hippocampus, there is still some residual overlap
between similar items, which can lead to interference (Norman et
al., 2003, 2005). Our differentiation mechanism operates on this
residual overlap after standard pattern separation takes place.
That is, the residual neural overlap between related memories of
A and B leads to incorrect prediction of B when A is presented,
which drives further reduction of the residual neural overlap and
reduces subsequent interference.

This study was not designed to identify the behavioral conse-
quences of neural differentiation, although that remains an im-
portant goal of future work. Here, we used an item recognition
memory test to be consistent with our prior study (Kim et al.,
2014), but this is not a sensitive way to measure differentiation.
Prior modeling work (Norman and O’Reilly, 2003; Norman,
2010) and empirical studies (LaRocque et al., 2013) suggest that
reduced neural overlap can have opposite effects on different
components of memory: boosting recollection by reducing inter-
ference from other memories, but reducing familiarity by lower-
ing global match. Because these effects go in opposite directions,
they might cancel each other out in our recognition test, which is
sensitive to both components. The aforementioned study by
Favila et al. (2016) suggests a better way of behaviorally measur-
ing differentiation. Those investigators found that neural differ-
entiation between visually similar scenes (e.g., A and B) led to
enhanced subsequent learning of new associations between these
scenes and objects (A–X and B–Y), presumably because of re-
duced interference between the scenes.

Summary
We found that interleaved misprediction and restudy leads to
neural differentiation. These findings are consistent with predic-
tions from our neural network modeling work (Norman et al.,
2006, 2007) and other recent studies in the field (Schapiro et al.,
2012; Hulbert and Norman, 2015; Schlichting et al., 2015; Favila
et al., 2016). In addition, our findings are consistent with recent
evidence from the reconsolidation literature that misprediction is
a prerequisite for subsequent memory modification (Sevenster et
al., 2013; Merlo et al., 2015). Most importantly, by revealing a
relationship between prediction strength and differentiation, this
work suggests a key role for competition in driving representa-
tional change. This complements prior results showing that acti-
vation of nontarget memories can weaken them (Newman and
Norman, 2010; Detre et al., 2013; Kim et al., 2014; Poppenk and
Norman, 2014) and suggests that one function of such weakening
is to prepare the memory to accept new features and associations.
This adaptive optimization of memory may serve to increase the
accuracy of memory with respect to the current environment, to
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reduce subsequent interference, and to minimize prediction
errors.
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